
Doctoral Thesis

Positive and Invariant Tensor Decompositions
Approximations and Computational Complexity

Author: Andreas Klingler

01517439

Date: May 16, 2024

Submitted to the University of Innsbruck, Faculty of Mathematics, Computer Science, and Physics

for the academic degree

Doctor of Philosophy (Doktoratsstudium Physik)

Supervisors: assoz.-Prof. Dr. Gemma De les Coves

Institute for Theoretical Physics

Univ.-Prof. Dr. Tim Netzer

Department for Mathematics

Faculty for Mathematics, Computer Science and Physics





Copyright

cb This thesis is released into the public domain using the CC BY code.

To view a copy of the CC BY code, visit:

https://creativecommons.org/licenses/by/4.0/

Colophon

This document was typeset with the help of KOMA-Script and LAT
E
X using the kaobook class.

https://creativecommons.org/licenses/by/4.0/
https://sourceforge.net/projects/koma-script/
https://www.latex-project.org/
https://github.com/fmarotta/kaobook/




Acknowledgments

I am deeply grateful to my first supervisor, Gemma De les Coves, for giving me the opportunity to

do research in this fascinating field and to work on this challenging and exciting project. Under her

mentorship, I acquired the essential methodologies for conducting research and learned so many skills

in presenting and communicating my findings with clarity. I also appreciate her efforts in introducing

me to the academic world, for giving me so much freedom in my research, and, in particular, for

encouraging me to follow my goals.

I also extend my most profound appreciation to my second supervisor, Tim Netzer, for his consistent

support throughout this journey. His door was always open, offering invaluable patience and guidance

whether I encountered complex challenges or simply sought clarification on mathematical concepts. I

will always cherish our numerous inspiring discussions, which so often gave me new ideas and kept

me optimistic about the success of the projects.

The research presented in this dissertationwas partially funded by theAustrian Science Fund (FWF) via

the stand-alone project “Positivity structures in quantummany-body systems” (doi: 10.55776/P33122),

as well as the Austrian Academy of Sciences (ÖAW) via the DOC fellowship “Decompositions of

tensors with invariance, positivity and approximations” (project number 26547).

Throughout my PhD, I had the privilege of getting to know many wonderful friends and colleagues

who accompaniedme on this journey, whichwould not have been as enrichingwithout their support.

I want to thank all the members of my research group for fostering a great atmosphere within our

team. Special gratitude to Tomáš Gonda for his patience in helping me navigate through Category

theory. To Johannes Fankhauser, for all our stimulating discussions about philosophy, physics, and

psychology. To Mirte van der Eyden, Sebastian Stengele, and Tobias Reinhart for engaging in countless

discussions that deepened my understanding of various concepts in physics and mathematics. I am

also grateful to our secretary, Jade Meysami-Hörtnagl, for always keeping track of organizational

matters, especially concerning my fellowship.

I am also immensely grateful to Tobias Fritz for introducing me to the world of Categorical Probability,

which opened up a new line of research for me. Furthermore, I want to thank Areeb Shah-Mohammed

and Antonio Lorenzin for their insightful discussions that enhanced my understanding of Categorical

Probability.

I also want to thank Paria Abbasi for the many fruitful discussions and our collaboration during the

beginning of my PhD. I am also grateful to Paria and to Martin Berger for their support during my

application process for the DOC fellowship.

I extend a heartfelt thanks to all my friends who supported me throughout my entire academic

journey. Particularly to Michael Fellner, with whom I shared this journey from the very first week

of my Bachelor studies. I also want to thank all my friends outside of academia, especially Caro,

Dani, Eva, Steffi, Sabine, Alex and Josi, for their unwavering emotional support, even during the most

challenging times.

Finally, I am deeply grateful to my parents for their unwavering support and sacrifices that enabled

me to pursue studies in physics and mathematics. Their support allowed me to fully immerse myself

in my studies.

https://www.doi.org/10.55776/P33122




Abstract

Many composite systems are described by a tensor product and feature a notion of positivity.

Describing multipartite positive tensors is challenging for two reasons. One is the exponential growth

in the number of parameters. The second is the fact that the tensor product interacts with the positivity

cones in an intricate way. For example, it may be costly to enforce the positivity in the local terms of

the decomposition.

This thesis studies composite systems subject to positivity structures from the perspective of algebraic

geometry and computational complexity.

In the first perspective, we present a framework to decompose positive and invariant tensors so that

these properties manifest in the local terms and prove under which conditions optimizations over

such tensors are stable. We then apply this framework to positive, invariant multivariate polynomials.

Finally, we explore implications for the topology of the space of quantum correlation scenarios.

The second perspective concerns computational problems inspired by tensor decompositions. We

leverage a relation between tensor decompositions and certain linear recurrence sequences (called

moment sequences) to prove the decidability or undecidability of the positivity of such sequences.

Finally, we show that many undecidable problems in physics, computer science, and mathematics

concerning arbitrary large composite systems have bounded versions that are NP-hard.

Overall, this thesis sheds light on the algebraic, numerical, and computational properties of composite

systems, particularly on tensor product spaces, with positivity structures and invariance. It also unveils

tensor decompositions in unexpected places, to which a wealth of results can be applied.
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Introduction 1

To specify a theory or framework, one needs to describe its basic compo-

nents and how they are composed, i.e. how they can be combined to give

rise to other elements. A prime example lies in the postulates of quantum

mechanics, which not only detail the description of individual systems

but also their composition into larger, composite systems. It follows that

the notion of composition is thus a fundamental and essential part of a

theory.

The tensor product is a salient instance of composition found in theories

like quantum theory and probability theory. It captures the essence

of composition in systems where correlations between subsystems are

fundamental. For instance, in probabilistic settings, characterizing joint

systems requires defining probabilities for all combinations of outcomes

across subsystems.

Another crucial feature in these theories is positivity, by which the tensor

product space is equipped with a positivity structure. A certain cone of

positive elements defines valid objects in the theory. Indiscrete probability

theory, for instance, each outcome is associated with a nonnegative

number— the probability of that specific outcome. Consequently, only

tensors with nonnegative entries can describe probability distributions.

Similarly, in quantum theory: Open quantum systems are described by

mixed states, which are positive semidefinite matrices, establishing a cone

within the space of matrices.

Yet, tensor product structures pose challenges, notably due to the expo-

nential increase in the dimension of the system. For instance, simulating

the dynamics of a small quantum system with more than 100 particles is

impossible due to the exponential amount of degrees of freedom. If the

tensor product space is equipped with a positivity structure, additional

challenges arise due to the difficulty of verifying the positivity constraint

in the global tensors.

To address all these challenges, tensor (network) decompositions offer a

practical and powerful approach, both with analytical and numerical

applications. They describe elements in a multipartite tensor product

space by breaking them down into elementary components, enabling

the simulation of large quantum systems in a tractable way. Prominent

examples of tensor (network) decompositions are matrix product states, an
efficient representation of certain one-dimensional systems, or projected
entangled pair states, a generalization of matrix product states to higher

dimensional grids. The complexity of representing a tensor using such

decompositions is determined by the rank of the decomposition, which

reflects the number of degrees of freedomneeded to represent the original

vector.

A tensor product space incorporating an additional positivity structure

introduces numerous challenges for tensor decompositions. On the one

hand, the global positivity of the tensor may not be clearly reflected in the

resulting decomposition. In other words, the positivity of the tensor is

not inherent in the tensor decomposition. On the other hand, attempting
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to reflect positivity in the decomposition can significantly increase its

complexity in the local terms representing the tensor [36].

Recently, a framework to decompose positive and invariant tensors was

introduced [37]. This framework generates tensor decompositions along

with three variations:

▶ Decomposition geometry: The framework offers arbitrary decom-

position geometries, each mimicking a structural arrangement

resembling tensor networks. The geometry is determined by a

weighted simplicial complex.
▶ Explicit positivity: The decompositions can be made explicitly

positive in various ways. They have to ensure that the resulting

tensors have the required positivity constraint.

▶ Explicit invariance: For tensors invariant under permutations of

the local systems, we introduce constraints on the local elements in

the decompositions that lead to explicitly invariant global tensors.

In this thesis, we investigate this decomposition framework from two

perspectives:

▶ Applications: Is there an operational interpretation of positive

tensor decompositions? In other words, do positive tensors that

admit a certain decomposition have an interpretation beyond their

mere mathematical representation? We prove that tensors that

attain particular decompositions correspond to specific correlation

scenarios in quantum information (Chapter 3). We also introduce

a novel framework inspired by positive tensor decompositions

to decompose positive, multivariate polynomials into univariate

ones. This framework tracks the positivity and invariance of the

polynomials in local (univariate) polynomials (Chapter 5).

▶ Approximations: How do tensor decompositions behave under

approximations? In particular, is the rank a stable parameter, or

can it collapse for small approximations? We prove that positive

and invariant tensor decompositions can exhibit instablities when

subjected to approximations. We also elucidate the implications of

this instability for optimization strategies and correlation scenarios

in quantum information theory (Chapter 4).

We also explore the relationship between positivity and large systems,

like those present in the tensor product, from the computational com-

plexity perspective. Specifically, multipartite tensor product spaces with

positivity constraints share properties and challenges with other large

systems. We demonstrate that specific tensor decompositions give rise

to what are known as moment sequences, and verifying the positivity of

these decompositions corresponds to solving the positivity problem for

these moment sequences. The computational complexity results for such

tensor decompositions offer a novel perspective on the positivity problem

for arbitrary moment sequences, specifically for linear recurrence sequences.
Moreover, we show that a specific property of tensor decompositions —

the bounded version of an undecidable problembecomesNP-hard — ap-

plies to various problems in quantum information, quantum many-body

physics, mathematics and computer science.

This thesis is divided into two parts (see also Figure 1.1). In the first

part, we provide a comprehensive review of the framework for decom-
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Part I:

Decomposing positive

and invariant tensors

Applications:

▶ Correlations (Chapter 3)

▶ Polynomials (Chapter 5)

Approximations:

▶ Stability (Chapter 4)

Part II:

Computational problems

motivated by

tensor decompositions

Moment membership:

▶ Complexity (Chapter 7)

Undecidable problems:

▶ Bounding (Chapter 8)

Figure 1.1: Structure of this thesis. In the

first part, we study the framework to de-

compose positive and invariant tensors

(introduced in [37]) from the perspec-

tives of approximations and applications.

In the second part, we study two ques-

tions in computational complexity mo-

tivated by known computational results

for tensor decompositions.

posing positive and invariant tensors [37]. We study its stability under

approximations and explore its applications to correlation scenarios and

polynomial decompositions. The second part focuses on demonstrating

how computational complexity results for positive tensor decompositions

inspire various questions in computational complexity, especially when

combining positivity and large systems.

Let us now give a brief overview of the specific questions, results, and

methods in the different parts and chapters of this thesis.

Part I: Decompositions of Positive Tensors:

Approximations and Applications

In the first part, we review the framework to decompose positive and

invariant tensors, introduced in [37] (Chapter 2). Building upon this

framework, we present three results based on [74] and [39].

This part intersects two fields: (semi-)algebraic geometry and quantum

theory (see Figure 1.2). Specifically, we relate tools from algebraic ge-

ometry, like the border rank of a tensor, with concepts in quantum

information and quantum many-body physics, like correlation scenarios

and tensor network decompositions of mixed states. Conversely, we show

that the tensor (network) decompositions initially conceived for quantum

many-body systems give rise to a novel family of decompositions for

positive polynomials, which are the main characters in semi-algebraic

geometry.

Let us now elaborate on the questions and results in each chapter.

Tensor decompositions and correlation scenarios (Chapter 3). What

probability distributions can emerge from such shared resources when

multiple distant parties share a particular class of quantum states? Entan-

glement within the shared state determines the strength of correlations

from the probability distributions arising frommeasuring the state locally.

For instance, without any shared resources, the resulting probability

distributions can only be independent.
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We show that positive tensor decompositions relate to particular correla-

tion scenarios. Specifically, we prove that positive tensors with bounded

ranks correspond to probability distributions that arise via local measure-

ments from quantum states with a specific entanglement structure.

This correspondence provides us with both an operational interpretation

of the decomposition framework and a means to link properties of tensor

decompositions. This link will be further explored in Chapter 4.

Instabilities of tensor decompositions (Chapter 4). A crucial aspect of

tensor decompositions is their sensitivity to approximations, governed by

a defining parameter: the rank of the decompositions. When the rank of a

tensor is low, fewer degrees of freedom suffice to express the tensor. For

this reason, the rank is often used as a parameter to upper bound the cost

of representing tensors in numerical simulations. For instance, to make

an optimization problem over tensors tractable, one relaxes the problem

by only optimizing over the set of tensors with a bounded rank.

Unlike matrices, whose matrix rank remains stable under slight pertur-

bations, the tensor rank can collapse for arbitrarily small approximation

errors. This leads to undesirable properties for fixed-rank approxima-

tions of tensors, like instability of optimization problems. We show this

instability by introducing the border rank of a tensor, a well-known

rank notion from algebraic geometry, and enrich it with positivity and

invariance constraints. The border rank of a tensor measures the best

way to represent a tensor up to arbitrary small approximations. If the

border rank of a tensor is strictly smaller than its original rank (indicating

that arbitrarily good approximations of the tensor can be represented

more efficiently than the exact tensor), then the tensor decomposition is

instable.

Finally, we relate this instability with the correlation scenarios presented

in Chapter 3. The instabilities on the tensor side lead to constraints on

the feasibility of testing resources from finite samples.

Polynomial decompositions inspired by tensors (Chapter 5). Moti-

vated by the tensor decomposition framework, we introduce a novel

approach to decompose multivariate polynomials, which explicitly show-

cases their invariance and positivity. The symmetry with respect to

permutations of variables specifies the invariance and the notion of

sum-of-square polynomials specify the positivity in the space of mul-

tivariate polynomials. We show that these polynomial decompositions

behave very similarly to the original tensor decomposition framework.

Specifically, we prove that they parametrize the entire space of positive

and invariant polynomials in certain situations. Moreover, we show that

separations between ranks appear as well.

Part II: Computational Aspects of Tensor Decompositions

and Beyond

Many tensor (network) decomposition problems are very hard to solve on

a computer. Even worse, some of these problems are even undecidable,

i.e. there is no algorithm that solves them. In the second part of this
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quantum

theory

(semi-)algebraic

geometry

computational

complexity theory

Chapter 4, Chapter 5

Chapter 7 Chapter 8

Figure 1.2: This thesis applies tools from

computational complexity theory, semi-

algebraic geometry, and quantum the-

ory. In Chapter 4, we study tensor (net-

work) decompositions from the perspec-

tive of algebraic geometry by computing

their border ranks. In Chapter 5, we ap-

ply tensor decompositions to introduce

a novel type of polynomial decomposi-

tions that inherits positivity and invari-

ance. In Chapter 7, we apply tools from

computational complexity theory and

semi-algebraic geometry to prove that

the moment membership problem is de-

cidable, and in Chapter 8, we show that

many bounded versions of undecidable

problems in quantum information the-

ory are NP-hard.

thesis, we introduce problems and questionsmotivated by computational

aspects of tensor decompositions.

First, we show that certain tensor decompositions give rise to so-called

matrix moments. Second, we show that the computational behavior of

many large systems is already known for tensor decompositions, namely

undecidable problems give rise to NP-hard bounded versions.

Positivity of matrix moments (Chapter 7). Matrix moment sequences

are sequences of the form

n 7→ tr(An)

where A is a matrix and tr is the trace of a matrix. While these matrix

moment sequences are usually considered over matrices with real or

complex entries, they also generalize to matrices with entries that live in

a ring (i.e. a structure that allows only for multiplication and addition but

not inversion). This generalization also includes, for example, a particular

class of tensor decompositions by choosing a specific ring.

Moment sequences are particular instances of so-called linear recurrences
sequenceswhichfind applications inmanydifferent contexts.We show that

the undecidability of a particular tensor decomposition problem gives

rise to an undecidable problem for moment sequences and, therefore,

also for linear recurrence sequences. Moreover, we prove that specific

problems for these moment sequences remain decidable.

In this chapter, we use tools from semi-algebraic geometry to prove the

decidability of specific moment membership problems.

Bounded versions of undecidable problems (Chapter 8). Many prob-

lems in physics, mathematics and computer science have been proven

undecidable. All these problems share a common theme: There is a

parameter in the problem statement that can be arbitrarily large. In the

example of tensor network decompositions, this parameter is the number

of tensor product spaces; these problems ask for properties of tensor

decompositions of arbitrary size.
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What happens to the complexity of the problem if this parameter is

bounded? In Chapter 8, we show that many bounded versions of un-

decidable problems that arise from bounding the parameter become

NP-hard. Specifically, we elucidate how the proof for undecidable prob-

lems can be leveraged to prove the NP-hardness of the bounded versions.

While this was already known for several tensor network problems [36,

72, 108], we extended this principle to many other problems in mathe-

matics and physics. For this reason, the tools used in this part are at the

intersection of computational complexity theory and quantum theory.
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Decompositions of Positive Tensors:

Approximations and Applications





A framework to decompose

positive and invariant tensors 2

The tensor product is a mathematical construct that models the compo-

sition of single systems into a joint system in many theories, including

quantum theory and probability theory. In simple scenarios, a tensor

product can be understood as a collection of scalar values (for example,

real or complex numbers) in a multi-dimensional array. The simplest

examples of tensors are one-dimensional arrays, often referred as vec-

tors
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(
ai
)

i=1,...,d = (a1 a2 . . . ad).

Expanding this concept to the two-dimensional realm yields bipartite

tensors, known as matrices

(
aij
)

i,j=1,...,d =


a11 a12 · · · a1d
a21 a22
.
.
.

.
.
.

ad1 add

 .

Analogously, n-partite tensors are represented by n-dimensional arrays(
ai1,...,in

)
i1,...,in

where every entry is a scalar (see Figure 2.1).

Multipartite tensors encounter a significant challenge: their degrees

of freedom grow exponentially with the system size. While a single

d-dimensional vector is uniquely defined by d scalar values, an n-partite
tensor with each part having a local dimension of d necessitates dn

distinct parameters. Tensor decompositions offer a strategies to represent

specific tensors more parsimoniously.

Take for example the n-partite tensor of the following form:

ai1 · bi2 · · · cin

This particular tensor requires only n · d distinct scalar values to fully

parametrize the n-partite tensor. Tensors structured in this manner

are termed elementary. The conventional tensor decomposition involves

breaking down tensors into a combination of elementary tensors (as

depicted in Figure 2.2). The count of elementary tensors needed to

Scalar Vector

Matrix

(Bipartite Tensor)

Tripartite Tensor

Figure 2.1: From scalars and arrays to bi-

partite and tripartite tensors. A scalar

is a single number, represented by a

box in the figure. A vector in a finite-

dimensional vector space can be under-

stood as one-dimensional array of scalars.

A bipartite tensor is a two-dimensional

array, a tripartite tensor is a three dimen-

sional array. Similarly, a n-partite tensor
is a n-dimensional array. Of course this

is only possible if a basis is chosen in the

vectorspaces.
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Figure 2.2: A tensor admits a decompo-

sition into a sum of elementary tensors,

where each elementary tensor (gray) is

specified by a vector for every axis. For

tripartite tensors, an elementary tensor

is specified by three vectors.

= + + · · ·

decompose a tensor is known as the tensor rank. This parameter in

particular serves as a complexity measure for the tensor.

Tensors frequently possess an inherent positivity structure. Positive tensors
form a subset of tensors that exhibit additional properties typical of

positive elements. For instance, positive tensors retain their positivity

when multiplied by a positive factor or when combined with another

positive tensor. Note that the global positivity of a tensor typically does

not manifest in the individual local elements, i.e., the elementary tensors.

Consequently, this absence of local reflection does not guarantee the

overall positivity of the global tensor.

In this chapter, we present a framework to decompose positive and

invariant tensors. We will utilize this framework to show the following

results in the following chapters of this part:

▶ Positive tensors describe certain correlation scenarios within quan-

tum information theory. Particularly, the count of elementary ten-

sors in a positive tensor decomposition serves as a measure of

correlation inherent in multipartite probability distributions.

▶ When subjected to approximations, positive and invariant tensor

decomposition methods are susceptible to instability. Specifically,

the count of elementary tensors may diminish when tolerating

minor approximation errors. This phenomenon entails instabilities

in numerical optimization processes for tensors.

▶ The tensor decomposition framework gives rise to a novel frame-

work to decompose multipartite, positive polynomials.

2.1 Basic definitions

In the following, we introduce the basic definitions of the tensor product

in vector spaces and the notion of a positivity structure on tensors.

Throughout this thesis, we make use of the braket notation for vectors.

In particular, we denote an element in a C-vector space
1 V by1: We will also often make use of R-

vector spaces. The construction of the

tensor product space does not rely on

the specific choice of the ground field.

|v⟩ ∈ V

with its dual element is given by ⟨v| ∈ V∗
. Applying a linear operator

A : V → W to |v⟩ is denoted by A |v⟩. Applying an element in the dual

vector space ⟨w| ∈ V∗
to an element |v⟩ ∈ V is denoted by ⟨w | v⟩.

We denote the standard basis ofCd
by |1⟩ , . . . , |d⟩.2 IfV = Matd(C), then2: In quantum information, it is often

customary to begin counting from 0.
Here, we adopt the convention of count-

ing from 1 to d for the sake of readability.

the standard basis is given by elements |i⟩ ⟨j| for i, j = 1, . . . , d. Moreover,

for a matrix A ∈ Matd(C) the entry at position (i, j) is determined by

tr
(

A |j⟩ ⟨i|
)
= ⟨i| A |j⟩ .
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2.1.1 The tensor product

Following the intuition of tensors depicted in Figure 2.1, the tensor

product of the finite-dimensional vector spaces Cd ⊗ Cd
is the vector

space spanned by the basis vectors

|j1, j2⟩ for j1, j2 = 1, . . . , d

and the n-partite tensor product space
(

Cd
)⊗n

is spanned by the basis

vectors

|j1, . . . , jn⟩ for j1, . . . , jn = 1, . . . , d

We now give a brief overview of the construction of the tensor product There are also alternative constructions

of the tensor product using the univer-

sal property. For details on the different

approaches, we refer to [79, Chapter 16].

for arbitrary vector spaces. Let V , W be two vector spaces. Consider the

vector space Q spanned by the basis vectors

(|v⟩ , |w⟩) ∈ V ×W .

Note that Q is always infinite-dimensional
3
as for |v1⟩ ̸= |v2⟩, the 3: Of course assuming that V ,W are

nontrivial.
elements (|v1⟩ , |w⟩) and (|v2⟩ , |w⟩) are linearly independent, even if

|v1⟩ = λ |v2⟩. Consequently, we need to consider a specific subspace of

Q to define the tensor product V ⊗W —a subspace where examples

like the one above are linearly dependent.

Let L ⊆ Q be the subspace spanned by the following elements

(|v1⟩+ |v2⟩ , |w⟩)− (|v1⟩ , |w⟩)− (|v2⟩ , |w⟩)
(|v⟩ , |w1⟩+ |w2⟩)− (|v⟩ , |w1⟩)− (|v⟩ , |w2⟩)

(λ |v⟩ , |w⟩)− λ(|v⟩ , |w⟩)
(|v⟩ , λ |w⟩)− λ(|v⟩ , |w⟩)

(2.1)

for every λ ∈ C, |v⟩ , |v1⟩ , |v2⟩ ∈ V , |w⟩ , |w1⟩ , |w2⟩ ∈ W . This space

allows us to construct the tensor product space of V and W .

Definition 2.1.1 (The tensor product space)

The tensor product space of V and W is defined by

V ⊗W := Q/L

where Q/L is the quotient of Q by L. The representatives in Q/L
of elements (|v⟩ , |w⟩) ∈ Q are denoted by

|v⟩ ⊗ |w⟩ .

The quotient space is defined as follows:

Every subspace U ⊆ V of a vector space

gives rise to an equivalence relation

x ∼ y ⇐⇒ x − y ∈ U

The setV/U is defined by all equivalence

classes induced by∼. These equivalence

classes define themselves a vector space.

Intuitively, the quotient space arises by

identifying all elements in U to be zero.

Note that according to Equation (2.1), the tensor product of vectors is

bilinear, i.e.

|v⟩ ⊗
(
|w1⟩+ λ |w2⟩

)
= |v⟩ ⊗ |w1⟩+ λ |v⟩ ⊗ |w2⟩ .

This holds true for every |v⟩ , |w1⟩ , |w2⟩ and λ, and similarly for the first

component.

While this construction of V ⊗W is very abstract and non-constructive,

the following proposition elucidates the behavior of the tensor product,
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particularly showcasing the intuitive properties of tensor products of

Cd
:

Proposition 2.1.1

Let V and W be vector spaces with bases {|vi⟩}i∈I and {|wj⟩}j∈J
respectively. The tensor product space

V ⊗W

is the vector space spanned by the basis vectors:{
|vi⟩ ⊗ |wj⟩ : (i, j) ∈ I × J

}
.

Proposition 2.1.1 makes apparent that the vector space dimension is

multiplicative, i.e.

dim(V ⊗W) = dim(V) · dim(W).

If V ,W = Cd
, then the standard basis vector define a basis on Cd ⊗ Cd

given by |i⟩ ⊗ |j⟩ for i, j ∈ {1, . . . , d}. We will denote these vectors by

|i, j⟩ := |i⟩ ⊗ |j⟩

for simplicity. Similarly, the basis of an n-partite tensor product space is
spanned by all combinations of basis vectors of the local vector spaces.

In the case V ,W = Cd
, the bipartite tensor product can also be realized

using the matrix space Matd(C). Specifically, identifying

|j1, j2⟩ := |j1⟩ ⟨j2| ,

every matrix T ∈ Matd(C) corresponds to a tensor |T⟩ ∈ Cd ⊗ Cd
as

follows:

|T⟩ =
d∑

j1,j2=1

⟨j1| T |j2⟩ |j1, j2⟩

and vice versa. This correspondence reflects the representation of a

bipartite tensor as a matrix, illustrated in Figure 2.1.

2.1.2 Positivity structures on tensor product spaces

Vector spaces often come equipped with a positivity structure. In the

following, we give three examples of tensor product structures with

positivity constraints.

For a vector space V , we call C ⊆ V a positivity structure if it satisfies

▶ If |v⟩ ∈ C, then λ |v⟩ ∈ C for every λ ⩾ 0.
▶ If |v⟩ , |w⟩ ∈ C, then |v⟩+ |w⟩ ∈ C.

In other words, C is a convex cone, i.e. positive combinations of elements

in C are again contained in C.

In this thesis, we will study three concrete examples of positivity struc-

tures in tensor product vector spaces arising fromdifferent applications:
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Multipartite probability distributions: Providing a discrete probability

distribution merely requires specifying the probabilities of the outcomes.

Specifically, if X is a random variable taking values 1, . . . , d, we can

associate the probabilities P(X = j) with a vector |T⟩ ∈ Rd
such that

P(X = j) = ⟨j | T⟩ .

Extending this concept to probability distributions involvingmultiple ran-

dom variables X1, . . . , Xn, each ranging from 1 to d, the correspondence
expands to

P(X1 = j1, . . . , Xn = jn) = ⟨j1, . . . , jn | T⟩

for a tensor

|T⟩ ∈ Rd ⊗ · · · ⊗ Rd ∼= Rdn
.

Tensors that represent probability distribution are entrywise nonnegative,
i.e.

⟨j1, . . . , jn | T⟩ ⩾ 0.

This establishes a positivity structure within the multipartite tensor

product space.

Multipartite mixed quantum states: Following the axioms of quantum

mechanics, physical degrees of freedom are described by a pure quantum

state—a vector |ψ⟩ in a Hilbert space H. The concrete choice of the

Hilbert space H depends on the system; for instance, a fixed-in-space

spin-
1
2 particle is modeled by H = C2

.

The composition of multiple quantum systems is captured by the tensor

product. For example, the joint system of n spin-
1
2 particles is described

via a state

|ψ⟩ ∈ C2 ⊗ · · · ⊗ C2 ∼= C2n
.

In practice, one often has access only to a part of the entire physical

system. Instead of defining a wave function for the entire system, a

complete description of the reduced system is given by mixed states, also
called density matrices. These are described by a positive semidefinite

(psd) operator ρ ∈ B(H) with tr(ρ) = 1. As in the pure state picture,

combining open quantum systems is accomplished through the tensor

product. For instance, a single spin-
1
2 particle is described by a psd

2 × 2 matrix ρ ∈ Psd2(C), while an open system of n spin-
1
2 particles is

described by a state

ρ ∈ Her2(C)⊗ · · · ⊗ Her2(C) ∼= Her2n(C) with ρ ≽ 0.

Density matrices represent a positivity structure on the multipartite

matrix tensor product space, as the space of psd matrices forms a convex

cone.

Multivariate polynomials: Multivariate polynomials emerge as a tensor

product structure of univariate polynomials. A univariate polynomial

(in the variable x) is a linear combination of monomials xk
. In essence,

the space of polynomials in x, R[x], is the vector space generated by the
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monomial basis {xk : k ∈ N}. When we combine monomial bases in two

variables, we once again acquire a monomial basis:

{xkyℓ : k, ℓ ∈ N}.

These monomials span the space of bivariate polynomials R[x, y] repre-
senting polynomials of the form

p =
n∑

k,ℓ=1

ck,ℓxkyℓ.

where ck,ℓ ∈ R. With Proposition 2.1.1 this demonstrates that

R[x, y] = R[x]⊗ R[y].

Multivariate polynomials embody multiple positivity structures. One

example are nonnegative polynomials, which are polynomials satisfying

p(x, y) ⩾ 0 for all x, y ∈ R.

Another example is the cone of sum-of-square polynomials, i.e. polyno-

mials of the form

p =
r∑

t=1

q2
t .

For a detailed discussion of positivity structures on multipartite polyno-

mials, we refer to Chapter 5.

2.2 The building blocks to decompose tensors

Multipartite tensors are, in general, very costly to represent. This follows

from the exponential increase of the vector space dimension with respect

to the number of local spaces.

Elementary tensors are specific elements that are easy to represent. An

elementary tensor in

(
Cd
)⊗n

|T⟩ = |v[1]⟩ ⊗ · · · ⊗ |v[n]⟩

is specified by n vectors in Cd
. Therefore, we only need n · d scalars to

describe an elementary tensor. Every tensor admits a decomposition into

elementary tensors, called a tensor decomposition, i.e.

|T⟩ =
r∑

α=1

|v[1]α ⟩ ⊗ · · · ⊗ |v[n]α ⟩

The minimal parameter r realizing such a decomposition, called the

tensor rank of |T⟩, is a measure of the cost of describing the tensor, as it

enables representing the tensor using only r · n · d scalars. Consequently,

tensors with a low tensor rank can be efficiently represented.

There are many variants of tensor decompositions with other summation

geometries, local positivity constraints, or local invariance constraints.
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For example, one can decompose a tensor via a cyclic arrangement of

indices

|T⟩ =
r∑

α1,...,αn=1

|v[1]α1,α2⟩ ⊗ |v[2]α2,α3⟩ · · · ⊗ |v[n]αn ,α1⟩ .

This decomposition is known as the matrix product state (MPS) decom-

position, and is widely applied in quantum many-body physics [89, 90,

30, 3].

Introducing local symmetry constraints such as

|v[i]α,β⟩ = |v[j]α,β⟩ for every i, j ∈ {1, . . . , n} (2.2)

gives rise to a global symmetry constraint. Concretely, Equation (2.2) leads

to translational invariance of the |T⟩, i.e. invariance under translations of
the local tensor factors.

Introducing local positivity constraints such as

⟨j | v[i]α,β⟩ ⩾ 0 for all α, i, j (2.3)

gives rise to a global positivity constraint. Concretely, Equation (2.3) guar-

antees that the global tensor |T⟩ is entrywise nonnegative.

In the following we review a framework for decomposing positive and

invariant tensors based on weighted simplicial complexes. Weighted

simplicial complexes specify a geometry in the decomposition (i.e. a spe-

cific arrangement of summation indices). Equipping this geometry with

an additional symmetry constraint via a group action on the weighted

simplicial complex (WSC) will be the basic building block to define

invariant and positive decompositions. The idea of this framework is

based on [37] and has been used since then in [38, 39, 74].

In Section 2.2.1 and Section 2.2.2 we introduce the basic machinery of

weighted simplicial complexes and group actions. Finally, in Section 2.2.3,

we will present numerous examples of WSC that will appear throughout

this thesis.

Throughout this thesis, we denote the set {1, . . . , n} by [n].

2.2.1 Weighted simplicial complexes

A weighted simplicial complex is a mathematical structure that models

relations between different objects, similar to graphs. More specifically, it

consists of vertices representing the objects and facets, which connect the

different vertices.

Definition 2.2.1 (Weighted simplicial complex)

A weighted simplicial complex (in short WSC) Ω on the set [n] is a
function

Ω : P
(
[n]
)
→ N

which satisfies the condition

S1 ⊆ S2 ⊆ [n] =⇒ Ω(S1) divides Ω(S2)



16 2 A framework to decompose positive and invariant tensors

If Ω(S) ∈ {0, 1} for every S ⊆ [n], we call Ω a simplicial complex.

A subset S ⊆ [n] such that Ω(S) ̸= 0 is termed a simplex of Ω. We assume

that for every i ∈ [n], the set {i} is considered a simplex, which we call a

vertex of Ω.

If S is maximal with respect to inclusion
4
, we call it a facet. We denote4: i.e. for every T ⊋ S, we have Ω(T) =

0
the set of facets by

F := {F ⊆ [n] : F facet of Ω}.

Moreover, we define the set of facets on {i} by

Fi := {F ∈ F : i ∈ F}

The sets F and Fi will play a central role for defining tensor decomposi-

tion.
5

5: We refer to Section 2.3 for definitions

and examples of these tensor decompo-

sitions.
Restricting the function Ω to F and Fi makes these sets into multisets

6
,

6: A multiset with elements in A is a

function m : A → N+ , where N+ is the

set of positive natural numbers. Each el-

ement a ∈ A is contained in the multiset

precisely m(a) times.

whichwe denote by F̃ and F̃i. For simplicity, wewill treat these multisets

analogously to sets. Therefore, for any facet F, the value Ω(F) represents
the multiplicity of F in the WSC.

Note that a WSC is a special type of multihypergraph [20], where each

simplex is contained within a facet, and the multiplicities of the simplices

adhere to the condition in Definition 2.2.1. Consequently, a WSC can be

understood as a properly structured multihypergraph. We refer to the

examples in Section 2.2.3 to elucidate this analogy further.

2.2.2 Group actions on weighted simplicial complexes

In the following, we introduce the concept of a group acting on a WSC

Ω. Essentially, a group acting on a WSC consists of a permutation of

vertices that is compatible with the structure of the WSC, similar to a

graph-automorphism for graphs [20].

We say that a group G acts on a set X if there is a map

α : G × X → X

that satisfies the identity and the compatibility axiom.
7
For convenience we7: The identity axiom states that

α(e, x) = x for all x ∈ X and compatibil-

ity means that α(g, α(h, x)) = α(gh, x)
for all g, h ∈ G and x ∈ X.

will use the shorthand notation gx for α(g, x).

In the followingwedefine a somebasic notions regarding group actions.

Definition 2.2.2 (G-invariant functions)

Let f : X → Y be a function and let G act on X. We say that f is

G-invariant if

f (gx) = f (x) for all x ∈ X, g ∈ G.

Intuitively, a G-invariant function remains the same under group actions

on the X.
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Moreover, for a function f : X → Y and a group action G on X, we define

the shifted function

g f : X → Y

x 7→ f (g−1x).
(2.4)

By definition, we have that
gh f = g

(
h f
)
as well as

e f = f . Moreover,

the map

g : YX → YX : f 7→ g f

is a bĳection.
8

8: YX
indicates the space of functions

from X to Y. These functions can alterna-

tively be represented as a tuple indexed

by X with values inY, hence the notation.

We now introduce the notion of a group action on a WSC Ω.

Definition 2.2.3 (Group actions on WSC)

A group action of G on a WSC Ω is given by the following two parts:

▶ An action of G on the set [n], such that Ω is G-invariant with

respect to the action of G induced on P([n]), i.e.

Ω(gA) = Ω({ga : a ∈ A}) = Ω(A).

This group action then reduces to a group action on the set F .

▶ A compatible refinement of the group action G to the multiset

F̃ . In other words, a group action G on F̃ such that the collapse

map

c : F̃ → F

is G-linear, i.e. c(gF) = gc(F) for all g ∈ G and F ∈ F̃ .

In simple terms, a group action on a WSC outlines how the vertices [n]
can be rearranged while preserving the original structure of the WSC.

If the WSC contains, in addition, multi-facets, then the action of the

group on the multi-facets needs to be refined since the rearrangement of

the vertices does not uniquely determine the permutation of the facets

anymore.

Now, we introduce two crucial properties of group actions essential for

characterizing tensor decompositions based on WSC. Initially, we define

these concepts for general group actions and subsequently refine the

definitions for actions tailored to WSC.

Definition 2.2.4 (Free and blending group actions)

Let G be a group acting on a set X.

(i) G is free if the only stabilizer is the identity, i.e. Stab(x) = {e}
for every x ∈ X, where

Stab(x) := {g ∈ G : gx = x}.

(ii) G is blending if for every choice g1, . . . , gn ∈ G such that

{g11, g22, . . . , gnn} = [n]
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there exists g ∈ G such that gi = gii for every i ∈ [n].

Intuitively, a free group action consists of permutations that keep no

element fixed. For example, if X = Zk is the set of natural numbers

0, . . . , k − 1 with addition modulo k, then addition

Zk × Zk → Zk : (c, a) 7→ c + a mod k

is a free group action on Zk.

Definition 2.2.5

A group action of G on a WSC Ω is called:

(i) free if the action of G is free on F̃ ;

(ii) blending if the action of G is blending on F̃ ;

(iii) external if for all g ∈ G such that gi = i we have that

gF = F for every F ∈ F̃i.

We now present examples of WSC Ω and group actions G on Ω, which

satisfy various such properties.

2.2.3 Examples of weighted simplicial complexes with

group actions

We now construct various examples of WSC that play a central role in

this part of the thesis:
9

9: These examples give rise to conceptu-

ally distinct types of tensor decomposi-

tions (c.f. Section 2.3.1), each exhibiting

entirely different characteristics and be-

haviors (see, for instance, Chapter 4 or

Chapter 5).

▶ The simplex
▶ The line with n vertices

▶ The cycle with n vertices

▶ The double edge

Furthermore, we illustrate instances of group actions on these WSC.

A summary of which properties apply to the examples is provided in

Table 2.1.

Table 2.1: Which properties of Defini-

tion 2.2.5 are satisfied for the examples

of (Ω, G)? This table shows when the

simplex with full symmetry group, the

line and the double edge with the cyclic

group, and the cycle with the cyclic

group are free, blending, or external.

free blending external

(Σn, Cn) no yes yes

(Λn, C2)
yes (n odd) yes (n ⩽ 3) yes (n even)

no (n even) no (n ⩾ 4) no (n odd)

(Θn, Cn) yes no yes

(∆, C2) yes yes yes

Example 2.2.1 (The simplex)

The simplicial complex Ω = Σn that maps each subset of [n] to 1 is

called the simplex. In particular, this WSC contains precisely one facet

F :=
{
[n]
}

.
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For n = 5, the hypergraph corresponding toΣn is illustrated in Figure 2.3.

It is worth noting that any group action on [n] results in a trivial group

action on F̃ , thereby defining a group action on Σn.

Note that the action of the full permutation group Sn on [n] is blending.
Moreover, the trivial group action G = {e} is the only free group action,

and every group action on Σn is also external.

1

2
3

4
5

{1, . . . , 5}

Figure 2.3:The simplex for n = 5with its

5 vertices and its single facet {1, . . . , 5}
connecting all vertices.

1 2 n − 1 n
{1, 2}

Figure 2.4:The linewith n vertices. Every

facet connects two neighboring vertices.

The arrows in orange illustrate the only

non-trivial group action C2 on Λn which

reflects the vertices.

Example 2.2.2 (The line with n vertices)

For n ⩾ 1, the line with n vertices is the simplicial complex Ω = Λn
given by the graph shown in Figure 2.4. Specifically, the set of facets is

given by

F = F̃ :=
{
{1, 2}, {2, 3}, . . . , {n − 1, n}

}
and therefore consists of n − 1 elements. The only non-trivial group

action on Λn is the cyclic group with two elements G = C2. Here, the

generator reverses the order of the vertices, meaning that vertex i is
mapped to vertex n + 1 − i. This action is free if and only if n is odd.

10
10: If n is even, themiddle edge is a fixed

point of the action.
Moreover, it is blending if and only if n ⩽ 3, and it is an external group

action if and only if n is even.
11

11: If n is odd, the group action keeps

the middle vertex fixed but permutes the

two edges connected to it.

Example 2.2.3 (The cycle with n vertices)

For n ⩾ 3, the cycle with n vertices is the simplicial complex Ω = Θn
corresponding to the graph shown in Figure 2.5. Specifically, the set of n
facets is given by

F =
{
{1, 2}, {2, 3}, . . . , {n − 1, n}, {n, 1}

}
.

One group action on Θn is the cyclic group Cn that is defined by the

generator

τ : : i 7→ i + 1 mod (n + 1).

Translations of vertices induce a group action on F (see also Figure 2.5).

Cn is a free and external group action on Θn for every n, but it is not
blending.

1

2
3

n − 1
n

Figure 2.5: The cycle with n vertices. A

vertex is characterized by the set of ver-

tices which are contained in it. The ar-

rows in orange illustrate the group action

Cn on Λn, which is a translation of the

facets.

Example 2.2.4 (The double edge)

A WSC can include multiple facets containing the same vertices. A basic

example showing this property is the double edge ∆. It comprises two

vertices {1, 2} and its multiset of facets is given by F̃ := {a, b} where

1, 2 ∈ a and 1, 2 ∈ b. The double edge is depicted in Figure 2.6.

Note that the single edge corresponds to the WSC Λ2 = Σ2. While Σ2
has no non-trivial free group action, there is a non-trivial free group

action on the double edge. Let C2 = {e, s} be the cyclic group with

two elements. According to Definition 2.2.3, a group action on ∆ is a

refinement on the level of multi-sets. If sa = b, i.e. C2 flips the edges,

then C2 is a free group action on ∆. This action is illustrated in Figure 2.6.

1 2

a

b

Figure 2.6: The double edge ∆. Its mul-

tiset of facets is given by {a, b}, where

both facets contain both vertices.
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2.3 Positive and invariant decompositions

In the following, we define the notion of an (Ω, G)-decomposition, a tensor
decomposition based on a WSC Ω, and a group action G on Ω.

Let V1, . . . ,Vn be vector spaces, where we call Vi the local vector space at
site i, and define the global vector space as

V := V1 ⊗ V1 ⊗ · · · ⊗ Vn

where ⊗ denotes the algebraic tensor product. For this reason, every

element in V is a finite sum of elementary tensors. Note that these vector

spaces do not have to be finite-dimensional in general; in Chapter 5, we

study the example of the infinite-dimensional vector space Vi = R[x].

Note that any group action G on [n] induces a linear action on V by

permuting the tensor factors, if Vgi = Vi. More precisely, we consider

the representation

ρ : G → GL(V)

where the action on the elementary tensors is given by
12

12: This defines a unique action on V by

linearity.

ρ(g)
[
|v[1]⟩ ⊗ |v[2]⟩ ⊗ · · · ⊗ |v[n]⟩

]
= |v[g1]⟩ ⊗ |v[g2]⟩ ⊗ · · · ⊗ |v[gn]⟩

For convenience, we will write g |v⟩ as a shorthand notation for ρ(g) |v⟩.
Further, note that we will assume throughout this work that Vi = Vj;

therefore, every group action G on [n] induces an action on V . All

results presented also apply for different Vi respecting the symmetry

constraints.

Note that the set of all functions YX
can be written up as a tuple if X is

finite. For example, if I is a finite index set, then for a WSC Ω, the set

I F̃

can be understood as a set of tuples

(αF)F∈F̃

where every entry is indexed by a facet F ∈ F̃ and takes values in I .1313: Each viewpoint has its own advan-

tages.While tuples are often used for spe-

cific examples, the functional approach

proves advantageous in the general set-

ting due to its greater flexibility and re-

duced technical complexity.

For i ∈ I , the set
I F̃i

can be analogously understood as tuples, but now only indexed by facets

containing the vertex i. Representing α in the functional way, allows to

define for α ∈ I F̃
the restriction

α|i := α|F̃i
∈ I F̃i .

2.3.1 Invariant tensor decompositions and ranks

We define the notion of an (Ω, G)-decomposition. Afterwards, we provide

explicit examples of these decompositions for the simplex, the line, the

cycle, and the double edge.
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In essence, we introduce a sum of elementary tensors, where the local

vectors of these tensors possess multiple summation indices. The orga-

nization of these indices is mirrored by WSC, such that each facet of

the WSC corresponds to one summation index. Furthermore, the group

action from G on the WSC introduces a symmetry within the elementary

tensors, according to the arrangement of summation indices.

Definition 2.3.1 ((Ω, G)-decomposition)

Let |v⟩ ∈ V . An (Ω, G)-decomposition of |v⟩ is given by a family of

local vectors (
|v[i]β ⟩

)
β∈I F̃i

for every i ∈ [n] with |v[i]β ⟩ ∈ Vi, satisfying the following:

▶ Decomposing |v⟩, i.e.

|v⟩ =
∑

α∈I F̃

|v[1]α|1
⟩ ⊗ · · · ⊗ |v[n]α|n

⟩ (2.5)

▶ Invariance: For every i ∈ [n], g ∈ G, and β ∈ I F̃i , we have

|v[gi]
g β ⟩ = |v[i]β ⟩

where
gβ is defined in Equation (2.4).

The smallest cardinality of the index set I among all possible (Ω, G)-
decompositions is called the (Ω, G)-rank of |v⟩, denoted by

rank(Ω,G)(|v⟩).

For convenience, we will call (Ω, G)-decompositions for trivial groups

G = {e} just Ω-decompositions and denote its corresponding Ω-rank

by

rankΩ(|v⟩).

Intuitively, an (Ω, G)-decomposition is a way of decomposing |v⟩ that is
explicitly invariant. Specifically, we have that

g |v⟩ =
∑

α∈I F̃

|v[g1]
α|g1

⟩ ⊗ · · · ⊗ |v[gn]
α|gn

⟩

=
∑

α∈I F̃

|v[g1]
g
(
(g−1

α)|1

)⟩ ⊗ · · · ⊗ |v[gn]
g
(
(g−1

α)|n

)⟩
=
∑

α∈I F̃

|v[1]
(g−1

α)|1

⟩ ⊗ · · · ⊗ |v[n]
(g−1

α)|n
⟩

=
∑

α∈I F̃

|v[1]α|1
⟩ ⊗ · · · ⊗ |v[n]α|n

⟩

where we use the invariance condition of Definition 2.3.1 in the third

equality and the fact that α 7→ gα is a bĳection on I F̃
in the last equality.

Wenowpresent examples of (Ω, G)-decompositions byusing the running

examples of Section 2.2.3. For these specific choices of Ω and G, the
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decompositions reproducewell-known tensor decompositions and tensor

network decompositions. For simplicity, we assume that Vi = Cd
.

Example 2.3.1 (The standard and symmetric tensor decomposition)

Let Σn be the simplex with n vertices.
14

14: See Example 2.2.1. The Σn-decomposition is given

by

|v⟩ =
r∑

α=1

|v[1]α ⟩ ⊗ · · · ⊗ |v[n]α ⟩

which corresponds to the standard tensor decompositions [78, Section 2.4].

This decomposition consists of one summation index, which is reflected

by the single facet in Σn.
15

15: In other words, since |F̃ | = 1, every
function α : F̃ → I is characterized by

a value α ∈ I .
For the full permutation group Sn, the (Σn, Sn)-decomposition is is

given by

|v⟩ =
r∑

α=1

|vα⟩ ⊗ · · · ⊗ |vα⟩

i.e. all local vectors are identical. This follows from the invariance

condition of Definition 2.3.1

|vα⟩ := |v[i]α ⟩ = |v[j]α ⟩ for all i, j ∈ [n].

This decomposition is known as the symmetric tensor decomposition [78,

Section 2.4]. The corresponding rank is called symmetric rank.

α1

α2

αn

1

2
3

n − 1
n

Figure 2.7: The cycle with n vertices and

its correspondence to the summation

indices in the Θn-decomposition. The

connecting facets of the WSC represent

all summation indices. For example the

facets containing vertex 1 represent the

summation indices α1 and α2 which are

associated to the local vectors in the first

local space.

Example 2.3.2 (Matrix Product States I)

For n ⩾ 3, let Θn be the cycle with n vertices.
16

16: See Example 2.2.3. The Θn-decomposition

is given by

|v⟩ =
r∑

α1,...,αn=1

|v[1]α1,α2⟩ ⊗ |v[2]α2,α3⟩ ⊗ · · · ⊗ |v[n]αn ,α1⟩ (2.6)

Here, the index αi represents the entry of the (αF)F∈I F̃ tuple indexed

by F = {i, i + 1} where addition is modulo n + 1. Since all vertices are
contained in two facets, we have two summation indices for every local

vector.

This decomposition is known as the MPS decomposition. Usually MPS

are presented parametrizing the coefficients of the tensor in a fixed basis,

i.e. finding a description of vj1,...,jn for

|v⟩ =
d∑

j1,...,jn=1

vj1,...,jn |j1, . . . , jn⟩ .

To obtain this representation, let A[i]
j ∈ Matr(C) with

⟨α| A[i]
j |β⟩ = ⟨j | v[i]α,β⟩ .
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Then, we obtain

|v⟩ =
d∑

j1,...,jn=1

tr
(

A[1]
j1

· A[2]
j2

· · · A[n]
jn

)
|j1, . . . , jn⟩

which corresponds to a MPS decomposition with closed boundary

conditions. Specifically, rankΘn(|v⟩) corresponds to the bond dimension
of the MPS. Tensor networks are often illustrated using a diagrammatic

calculus. We refer to Figure 2.8 for the tensor network diagram of

the MPS. For more details on the diagrammatic formalism of tensor

networks, we refer to [89, 22, 30].

Let in addition G = Cn be the cyclic group. The (Θn, Cn)-decomposition

is given by

|v⟩ =
r∑

α1,...,αn=1

|vα1,α2⟩ ⊗ |vα2,α3⟩ ⊗ · · · ⊗ |vαn ,α1⟩ (2.7)

The local vectors in Equation (2.7) are all the same, in contrast to Equation

(2.6). This is guaranteed by the invariance condition of Definition 2.3.1.

Note that this decomposition is called the translational invariant (ti)

MPS, defined as

|v⟩ =
r∑

j1,...,jn=1

tr
(

Aj1 · Aj2 · · · Ajn
)
|j1, . . . , jn⟩

with

⟨α| Aj |β⟩ = ⟨j | vα,β⟩ .

j1

A[1]
α2

j2

A[2]
α3

α1

· · ·

jn

A[n]
αn

Figure 2.8: The tensor network diagram

of the MPS with closed boundary condi-

tions. The thick lines correspond to the

matrix contraction, the thin open lines

represent the local physical systems of

dimension d.

j1

A[1]
α1

j2

A[2]
α2 · · ·

jn

A[n]
αn−1

Figure 2.9: The tensor network diagram

of the MPS with open boundary condi-

tions. The thick lines correspond to the

matrix contraction, the thin open lines

represent the local physical systems of

dimension d.

Example 2.3.3 (Matrix Product States II)

Let Λn be the line with n vertices.
17

17: See Example 2.2.2.The Λn-decomposition is given by

|v⟩ =
r∑

α1,...,αn−1=1

|v[1]α1 ⟩ ⊗ |v[2]α1,α2⟩ ⊗ · · · ⊗ |v[n−1]
αn−2,αn−1⟩ ⊗ |v[n]αn−1⟩ .

In this context, the index αi represents the entry of the (αF)F∈I F̃ tuple

indexed by F = {i, i + 1}. The vertices 1 and n are only included in one

facet, reflecting that these local tensors possess only one summation

index.

This decomposition corresponds to an MPS decomposition with open

boundary conditions, as there is no connection between the last and

the first local space. This decomposition can be expressed as a tensor

network as

|v⟩ =
r∑

j1,...,jn=1

A[1]
j1

· A[2]
j2

· · · A[n−1]
jn−1

· A[n]
jn |j1, . . . , jn⟩

where A[i]
j ∈ Matr(C) for i ∈ {2, . . . , n− 1}, A[1]

j ∈ C1×r
and A[n]

j ∈ Cr
.

We refer to Figure 2.9 for a representation of this decomposition via

tensor network diagrams.
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Example 2.3.4 (The double edge decomposition)

Let ∆ be the double edge.
18

18: See Example 2.2.4. The corresponding ∆-decomposition is

given by

|v⟩ =
r∑

α,β=1

|v[1]α,β⟩ ⊗ |v[2]β,α⟩ .

Moreover, the (∆, C2)-decomposition is given by
19

19: Note that here the order of the sum-

mation indices is important. Specifically,

the decomposition

v =
r∑

α,β=1

|vα,β⟩ ⊗ |vα,β⟩

corresponds to the double edge where

the edges are not swapped via the action

of C2. In this situation, the group action

is not free (see Definition 2.2.4).

|v⟩ =
r∑

α,β=1

|vα,β⟩ ⊗ |vβ,α⟩ .

Therefore, the the double edge decomposition can be viewed as an MPS

decomposition when n = 2.

2.3.2 Positive tensor decompositions

We now introduce invariant tensor decompositions tailored for tensors

that satisfy a positivity constraint. Specifically, these decompositions

inherentlymaintain positivity, ensuring the global tensor remains positive

under local perturbations. This is achieved by imposing additional

constraints on the local vectors in the tensor decomposition.

Specifically, we introduce decompositions for tensors in the space

V := Rd ⊗ · · · ⊗ Rd ∼= Rdn
,

i.e. every local space corresponds to Rd
. Moreover, we equip this space

with a notion of positivity, namely entrywise nonnegativity.2020: We introduce similar positive decom-

positions for multipartite psd matrices

in Section 2.3.5 and for positive polyno-

mials in Chapter 5.

A tensor |T⟩ ∈ Rd ⊗ · · · ⊗ Rd
is called entrywise nonnegative, if

⟨j1, . . . , jn | T⟩ ⩾ 0 for every j1, . . . , jn ∈ {1, . . . , d}.

Entrywise nonnegative tensors describe, for example, multi-partite prob-

ability distributions [80, 101]. For random variables X1, X2, . . . , Xn taking

values in {1, . . . , d}, the joint probability distribution is represented by a

nonnegative tensor, specifically:

P(X1 = j1, . . . , Xn = jn) = ⟨j1, . . . , jn | T⟩ .

We utilize this correspondence to make statements about correlation

scenarios via ranks of positive tensor decompositions.
21

21: See Chapter 3 for details on this rela-

tion.

In the following, we describe two notions of locally positive tensor

decompositions:

▶ the nonnegative decomposition

▶ the positive semidefinite decomposition

While the former employs entrywise nonnegative vectors as fundamental

components, the latter utilizes psd matrices as local constitutents.

These two decompositions extend well-known matrix factorizations,

including the nonnegative matrix factorization [31, 124, 18, 113], the
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completely positive decomposition [12], and the positive semidefinite

matrix factorization [49, 118, 112, 68]. We refer to Example 2.3.5 and

Example 2.3.7 for further details.

The nonnegative tensor decomposition

In the following, we introduce the nonnegative (Ω, G)-decomposition.

Intuitively, this decomposition builds upon the unconstrained (Ω, G)-
decomposition but restricts the local vectors to be entrywise nonnega-

tive.

Definition 2.3.2 (Nonnegative (Ω, G)-decompositions)

Let |T⟩ ∈ Rd ⊗ · · ·Rd
. A nonnegative (Ω, G)-decomposition of |T⟩

consists of an (Ω, G)-decomposition of |T⟩

|T⟩ =
∑

α∈I F̃

|T[1]
α|1

⟩ ⊗ · · · ⊗ |T[n]
α|n

⟩

such that
22

22: For a vector |v⟩ ∈ Rd
, we write

|v⟩ ⩾ 0

if ⟨j | v⟩ ⩾ 0 for every j ∈ [d].

|T[i]
β ⟩ ⩾ 0

for every i ∈ [n] and β ∈ I F̃i .

The smallest cardinality of the index set I among all nonnegative

(Ω, G)-decompositions is called the nonnegative (Ω, G)-rank of |T⟩.
We denote it by

nn-rank(Ω,G)(|T⟩).

For convenience, we call a nonnegative (Ω, G)-decomposition for the

trivial group G = {e} just nonnegative Ω-decomposition and denote its

corresponding nonnegative Ω-rank by

nn-rankΩ(|T⟩).

Intuitively, a nonnegative (Ω, G)-decomposition ensures explicit invari-

ance
23

and explicit entrywise nonnegativity, since 23: i.e. every element that achieves an

(Ω, G)-decomposition is automatically

G-invariant, i.e. g |T⟩ = |T⟩ (see the re-
marks of Definition 2.3.1).

⟨j1, . . . , jn | T⟩ =
∑

α∈I F̃

⟨j1 | T[1]
α|1

⟩ · · · ⟨jn | T[n]
α|n

⟩ ⩾ 0.

Let us now review examples of the nonnegative decompositions for

specific choices of WSC Ω and group action from G.

Example 2.3.5 (The simplex decomposition)

Let Σn be the simplex with n vertices.
24

24: See Example 2.2.1 for its definition.The nonnegative Σn-

decomposition is given by

|T⟩ =
r∑

α=1

|T[1]
α ⟩ ⊗ · · · ⊗ |T[n]

α ⟩ .

This is commonly referred to as the nonnegative tensor decomposition.
For n = 2, i.e. the single edge, this yields the nonnegative matrix fac-
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torization. For an entrywise nonnegative matrix M ∈ Matd(R), the
nonnegative matrix factorization is defined as

M = B1Bt
2,

where B1, B2 are d × r matrices with nonnegative entries and ( · )t
is the

matrix transposition. More specifically,

⟨j1| M |j2⟩ =
r∑

α=1

⟨j1| B1 |α⟩ · ⟨j2| B2 |α⟩

which agrees with a Σ2-decomposition by identifying

⟨j1, j2 | T⟩ := ⟨j1| M |j2⟩ and ⟨j | T[i]
α ⟩ := ⟨ji| Bi |α⟩ .

In particular, the column dimension of B1 and B2 agree with the number

of elementary tensors in the decomposition of |T⟩.
If G = Sn, we obtain the symmetric nonnegative decomposition

|T⟩ =
r∑

α=1

|Tα⟩ ⊗ · · · ⊗ |Tα⟩ ,

i.e. all local vectors are identical.

For n = 2, this decomposition gives rise to the completely positive (cp)
matrix factorization. For a matrix M ∈ Matd(R), this is defined as

M = BBt,

where B is a d × r matrix. Again the minimal number of columns of B is

precisely the number of elementary tensors in the tensor decomposition.

Example 2.3.6

Let Θn be the cyclewith n vertices.
25

25: See Example 2.2.3 for its definition. ThenonnegativeΘn-decomposition

is given by

|T⟩ =
r∑

α1,...,αn=1

|T[1]
α1,α2⟩ ⊗ |T[2]

α2,α3⟩ ⊗ · · · ⊗ |T[n]
αn ,α1⟩ .

This is also known as a nonnegative MPS, stochastic MPS [121], or nonneg-
ative tensor train decomposition [58]. Similar to MPS, this is expressed in

the computational basis as

|T⟩ =
d∑

j1,...,jn=1

tr
(

A[1]
j1

· · · A[n]
jn

)
|j1, . . . , jn⟩

using the same correspondence as in Example 2.3.2. For nonnegative

tensor train decompositions the local matrices A[i]
j are in addition

entrywise nonnegative.
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The positive semidefinite decomposition

We now define the psd (Ω, G)-decomposition. Intuitively, this replaces

the nonnegativity constraint of the local elements by positive semidefi-

niteness.

Definition 2.3.3 (Positive semidefinite (Ω, G)-decomposition)

A positive semidefinite (Ω, G)-decomposition consists of psd matrices

A[i]
j ∈ Mat

I F̃i
(C) for every i ∈ [n], j ∈ [d]

with the constraint that(
A[gi]

j

)
g β,g β′

=
(

A[i]
j

)
β,β′

decomposing |T⟩ as

⟨j1, . . . , jn | T⟩ =
∑

α,α′∈I F̃

(
A[1]

j1

)
α|1 ,α′|1

· · ·
(

A[n]
jn

)
α|n ,α′|n

The minimal cardinality of I among all psd (Ω, G)-decompositions

of |T⟩ is called the psd (Ω, G)-rank, denoted by

psd-rank(Ω,G)(|T⟩).

If G = {e}, we call the decomposition again just psd Ω-decomposition

and denote its corresponding rank

psd-rankΩ(|T⟩).

Again, every tensor admitting apositive semidefinite (Ω, G)-decomposition

is inherently G-invariant aswell as inherently entrywise nonnegative.
26

26: To see that a psd decomposition only

gives rise to nonnegative tensors,we refer

to Section 2.3.4.

Example 2.3.7 (The simplex decomposition)

Let Σn be the simplex with n vertices. The Σn-decomposition is given by

⟨j1, . . . , jn | T⟩ =
r∑

α1,α2=1

(
A[1]

j1

)
α1,α2

· · ·
(

A[n]
jn

)
α1,α2

.

This decomposition has been studied before in the context of quantum

correlation and quantum communication scenarios [69].

If n = 2, the decomposition specializes to the positive semidefinite matrix
factorization [49], which is defined as

⟨j1, j2 | T⟩ = tr
((

A[1]
j1

)
·
(

A[2]
j2

)t
)

.

If in addition G = S2, this leads to the completely positive semidefinite
transpose (cpsdt) decomposition [40]

While the cpsdt decomposition looks

similar to the completely positive semidefi-
nite (cpsd) decomposition

⟨j1, j2 | T⟩ = tr(Aj1 Aj2 ),

it deviates significantly from it in its be-

havior. For example, the cpsd decompo-

sition cannot be expressed as a tensor

decomposition. We refer to [100] for de-

tails.

, defined as

⟨j1, j2 | T⟩ = tr
(

Aj1 At
j2

)
.
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2.3.3 Inequalities of ranks

We now briefly review the relation of the different ranks, shown in

[37] for (Ω, G)-decompositions and in [40] for the Σn- and the Λn-

decompositions.

Lemma 2.3.1

Let |T⟩ be a nonnegative tensor. Then, the following inequalities

hold:

(i) rank(Ω,G)(|T⟩) ⩽ nn-rank(Ω,G)(|T⟩)
(ii) rank(Ω,G)(|T⟩) ⩽ psd-rank(Ω,G)(|T⟩)2

(iii) psd-rank(Ω,G)(|T⟩) ⩽ nn-rank(Ω,G)(|T⟩)
if G is a free

27
27: See Definition 2.2.5 for free group

actions.

action on Ω.

For the proof of this statement, we refer to [37, Corollary 37].

2.3.4 The structure tensor |Ωr⟩

We now introduce, for every WSC Ω with n vertices, a corresponding

n-partite tensor |Ωr⟩ of (Ω, G)-rank r which inherits the geometry of Ω.

This tensor facilitates a concise representation of (Ω, G)-decompositions

with (Ω, G)-rank r, which we will use in the proofs of Theorem 3.1.2

and Theorem 3.2.1. Defining tensor (network) decompositions via struc-

ture tensors is a common approach in tensor decompositions without

positivity constraints [29].

For the vector space CI F̃i
, we consider the standard basis{

|β⟩
}

β∈I F̃i
.

In other words, the basis vectors in system i are indexed by |β1, . . . , βk⟩,
where k is the number of facets that contain the vertex i and βℓ ∈
{1, . . . , r} for every ℓ ∈ [k].

Given a WSC Ω, we define

|Ωr⟩ :=
∑

α∈I F̃

|α|1⟩ ⊗ · · · ⊗ |α|n⟩ ∈
n⊗

i=1

Cri

where I = {1, . . . , r} and ri = |I F̃i |.
Figure 2.10: Tensor network representa-

tion of a matrix multiplication (MaMu)-

tensor. The double output correspond to

the space Cd ⊗ Cd
. For the n-cycle Θn, we obtain the n-fold MaMu-tensor (see Figure 2.10)

|Θn,r⟩ =
r∑

α1,...,αn=1

|α1, α2⟩ ⊗ |α2, α3⟩ ⊗ · · · ⊗ |αn, α1⟩ .

For the n-fold simplex Σn, we obtain the unnormalized r-dimensional
GHZ-state

|Σn,r⟩ =
r∑

α=1

|α⟩⊗n .
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Note that every (Ω, G)-decomposition of (Ω, G)-rank at most r can be

written as

|T⟩ = W [1] ⊗ · · · ⊗ W [n] |Ωr⟩ (2.8)

with

W [i] :=
∑

β∈I F̃i

|v[i]β ⟩ ⟨β| .

In this case, the G-invariance of |v[i]β ⟩ translates to

W [gi] |gβ⟩ = W [i] |β⟩ .

The nonnegative (Ω, G)-decomposition translates similarly, except for

the additional constraint

⟨j|W [i] |β⟩ ⩾ 0

for every j ∈ {1, . . . , d} and every β ∈ I F̃i .

The psd (Ω, G)-decomposition translates to

⟨j1, . . . , jn | T⟩ = ⟨Ωr| A[1]
j1

⊗ · · · ⊗ A[n]
jn |Ωr⟩ (2.9)

where A[i]
j are the matrices of Definition 2.3.3. From Equation (2.9) it is

also evident that |T⟩ is a nonnegative tensor, since the matrices A[i]
j are

psd.

Note that in all examples, the (Ω, G)-rank is determined by the minimal

parameter r in the structure tensor that admits such a decomposition.

2.3.5 Positive matrix tensor decompositions

We now introduce two positive tensor decompositions for multipartite

psd matrices, i.e. elements of the space

Matd(C)⊗ Matd(C)⊗ · · · ⊗ Matd(C) ∼= Matdn(C),

knownas separable decomposition and local purification form. Thesedecompo-

sitions can be perceived as generalizations of the positive decompositions

for nonnegative tensors. A relation between their ranks shall be presented

in Proposition 2.3.2.

We start with the definition of the separable (Ω, G)-decomposition.

Definition 2.3.4 (The separable (Ω, G)-decomposition)

Let ρ ∈ (Matd(C))⊗n
. The separable (Ω, G)-decomposition is given

by a family of matrices (
ρ
[i]
β

)
β∈I F̃i

for every i ∈ [n] with ρβ ∈ Matd(C), satisfying
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ρ =
∑

α∈I F̃

ρ
[1]
α|1

⊗ · · · ⊗ ρ
[n]
α|n

with the additional constraints:

▶ Symmetry: ρ
[gi]
g β = ρ

[i]
β

▶ Positivity: ρβ is psd.

The minimal cardinality of I among all separable (Ω, G)-
decompositions is called the (Ω, G)-rank, denoted

sep-rank(Ω,G)(ρ).

If G = {e} is the trivial group, we call the decomposition just separable

Ω-decomposition and its rank just separable Ω-rank, denoted

sep-rankΩ(ρ).

Note that every ρ attaining a separable (Ω, G)-decomposition is inher-

ently G-invariant, i.e. gρ = ρ.28 Moreover, matrices attaining a separable28: For a proof of gρ = ρ for uncon-

strained (Ω, G)-decompositions, we re-

fer to the remark after Definition 2.3.1.

decomposition are separable by construction.
29

29: A matrix A ∈ Matd(C)⊗ Matd(C)
is called separable if it accepts a decompo-

sition

A =
r∑

k=1

A[1]
k ⊗ A[2]

k

with A[i]
k ≽ 0 psd. Separable matrices

model quantum states without entangle-

ment.

Examples of separable (Ω, G)-decompositions are constructed similarly

to those of nonnegative (Ω, G)-decompositions, with the only difference

that nonnegative local vectors are replaced by psd local matrices. We also

refer to [40, 37] for more examples.

The separable decomposition exclusivelyparametrizes separablematrices,

a strict subset of psd matrices. Let us introduce a positive tensor decom-

position covering all multipartite psd matrices: the (Ω, G)-purification
form.

Definition 2.3.5 ((Ω, G)-purification)

For ρ ∈ Matd(C)⊗n
, an (Ω, G)-purification is a factorization

ρ = L†L

where L ∈ Matℓ,d(C)⊗n
for some ℓ ∈ N together with an (Ω, G)-

decomposition of L.
The most efficient (Ω, G)-decompositions among all purifications L
defines the purification rank of ρ, i.e.

puri-rank(Ω,G)(ρ) := min
ρ=L† L

rank(Ω,G)(L).

Again, if G = {e} is the trivial group, we call the decomposition just Ω-

purification and its corresponding rank Ω-purification rank, denoted

puri-rankΩ(ρ).

If ρ admits a (Ω, G)-purification, then it is automatically G-invariant as

well as psd, as every matrix of the form L†L is psd. Moreover, if G is a

free group action on Ω, then every psd G-invariant matrix admits an

(Ω, G)-purification30.30: We refer to [37, Theorem 20] for the

proof.
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We now present the example of the unconstrained Θn-decomposition

and Θn-purification for multipartite matrices.

Example 2.3.8 (The Matrix Product Operator form)

Let Ω = Θn be the cycle with n vertices.
31

31: See Example 2.2.3 for the definition.The Θn-decomposition is

given by

ρ =
r∑

α1,...,αn=1

ρ
[1]
α1,α2 ⊗ ρ

[2]
α2,α3 · · · ⊗ ρ

[n]
αn ,α1

where ρα,β ∈ Matd(C) are arbitrary matrices (not necessarily psd). This

is known as the matrix product operator (MPO) form or matrix product

density operator (MPDO) form [126, 130], also defined as

ρ =
d∑

j1,k1,...,jn ,kn=1

tr
(

A[1]
j1,k1

· · · A[n]
jn ,kn

)
|j1, . . . , jn⟩ ⟨k1, . . . , kn|

where A[i]
j,k ∈ Matr(C). The correspondence is given by

⟨α| A[i]
j,k |β⟩ = ⟨j| ρ

[i]
α,β |k⟩ .

See Figure 2.11 for a tensor network diagram.

A[1]

j1

k1

α2
A[2]

j2

k2

α3

α1

· · · A[n]

jn

kn

αn

Figure 2.11: Tensor network diagram

of the MPO. Thick lines (indexed by

α1, . . . , αn) correspond to the matrix con-

tractions, the thin open lines (indexed

by j1, k1, . . . , jn, kn) represent the local

physical systems of dimension d.

B[1] · · ·B[2] B[n]

B[1] · · ·B[2] B[n]

Figure 2.12: The tensor network diagram

of the local purificationMPDO form. The

thick horizontal lines correspond to the

matrix contraction of the tensor network

and the thin lines to the matrix contrac-

tions L† L. The thin open lines represent

the local physical systems of dimension

d.

Example 2.3.9 (The locally purified MPDO form)

Let Ω = Θn be the cycle with n vertices. The Θn-purification is given by

ρ = L†L

together with a Θn-decomposition of L,

L =
d∑

j1,k1,...,jn ,kn=1

tr
(

B[1]
j1,k1

· · · B[n]
jn ,kn

)
|j1, . . . , jn⟩ ⟨k1, . . . , kn| . (2.10)

The locally purified form also admits a tensor network representation

(see Figure 2.12).

This decomposition is known as the local purification form [41, 36] or

the locally purified density operator (LPDO) form.

The separable (Ω, G)-decomposition and the (Ω, G)-purification are

generalizations of the nonnegative and the psd (Ω, G)-decomposition,

correspondingly, in the following way: For a tensor |T⟩ ∈ Cd ⊗ · · · ⊗ Cd
,

let

ρ|T⟩ :=
d∑

j1,...,jn=1

⟨j1, . . . jn | T⟩ |j1, . . . , jn⟩ ⟨j1, . . . , jn| (2.11)

be the diagonal embedding of |T⟩ into a diagonal matrix. ρ|T⟩ is psd if

and only if |T⟩ is entrywise nonnegative.

We now state the correspondence between the ranks of nonnegative

tensors andmultipartite psdmatrices. For a proofwe refer to [37, Theorem

43].
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Proposition 2.3.2 (Decompositions of diagonal matrices)

Let |T⟩ be a nonnegative tensor.

▶ nn-rank(Ω,G)(|T⟩) = sep-rank(Ω,G)(ρ|T⟩)
▶ psd-rank(Ω,G)(|T⟩) = puri-rank(Ω,G)(ρ|T⟩)



Tensor decompositions and

correlation scenarios 3

In physics, we frequently encounter situations where we have access This chapter is based on Section 4 and

Appendix E, F of [74].
only to a limited set of observable quantities whose behavior depends

on a hidden entity. In quantum physics, the wavefunction serves as an

example where our access is restricted. In this context, we only possess

access through measurements conducted on the quantum system, which

effectively projects the wavefunction onto a probability distribution of

measurement outcomes. (see Figure 3.1).

3.1 Classical correlations . . . . 34

3.1.1 Classical correlations from

(Ω, G)-structures . . . . . . . 34

3.1.2 A correspondence to positive

tensor ranks . . . . . . . . . . . 35

3.2 Mixed state correlation

scenarios . . . . . . . . . . . 40

This begs the question: Can we deduce properties about the hidden

quantity—the wavefunction—from the outcomes of measurements?

State space

Observed correlations

Measurements

S

CS

Figure 3.1: Applying measurements on a

given set of states S gives rise to a subset

of probability distributionsCS . Therefore,

observing a correlation outside of CS
witnesses that the state of the system is

not contained in S.

Bell’s theorem [9] addresses this question in a specific setting. It demon-

strates that bipartite conditional probability distributions whose correla-

tion arises from a particular classical causal structure satisfy the so-called

Bell inequality. Consequently, a probability distribution that violates this

inequality cannot emerge from this particular causal structure.

In this chapter, we show a correspondence of similar flavor between

positive tensordecompositions and certain quantumcorrelation scenarios.

More specifically, we show the following:

Applying local measurements on multipartite quantum states that
obey a particular entanglement structure gives rise to probabilitiy
distributions with a bounded positive tensor rank.

Therefore, if a nonnegative tensor violates the tensor rank inequality, it

cannot arise from the specific measurement scenario. Specifically, we

show that if the subset of states S is given by states with a bounded

(Ω, G)-rank, then the set CS of arising correlations are characterized by

a bounded (Ω, G) psd rank. Furthermore, we will prove a generalized

correspondence replacing the observed correlations by density matrices

and measurements by quantum channels (see Section 3.2).

We will leverage this correspondence in Chapter 4 to prove that these

sets of correlations CS are not topologically closed by showing this result

on the level of tensors with bounded rank.
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Probabilistic structures and their connection to tensor- and matrix-ranks

have been previously explored:

▶ The nonnegative matrix decomposition is equivalent to a bipartite

classical correlation scenario [31]. Since then, this correspondence

has appeared in many different contexts and has also been general-

ized to the nonnegative tensor decomposition with one summation

index [80, 101].

▶ A similar relation between the positive semidefinite matrix rank

and bipartite quantum correlation scenarios has appeared in several

works, see [49, 68, 69, 50].

▶ Nondeterministic quantum communication also relates to a notion

of tensor rank, called the support rank [23].

▶ Nonnegative tensor network decompositions share a duality to

undirected graphical models1 as shown in [103, 58, 57, 84].1: An undirected graphical model is a

probabilistic model, where a graph ex-

presses the conditional independence

structure of the probability distribution.

For details on undirected graphical mod-

els, we refer to [76].

To the best of our knowledge, there is no existing relation between the

psd-rank for tensor networks and correlation scenarios.

This chapter is organized as follows: In Section 3.1 we introduce two

correlation scenarios arising from classical hidden variables, as well as

quantum states with a particular entanglement structure. We relate the

sets of these correlation scenarios with nonnegative tensors of bounded

rank. In Section 3.2 we extend these findings to mixed state correlation

scenarios.

3.1 Classical correlations

Multipartite, finite probability distributions can be associated with non-

negative tensors. In particular, if X1, . . . , Xn are random variables taking

values in {1, . . . , d}, then the tensor |T⟩, defined via

⟨j1, . . . , jn | T⟩ := P(X1 = j1, . . . , Xn = jn) (3.1)

is a nonnegative tensor which is in addition normalized, i.e.

d∑
j1,...,jn=1

⟨j1, . . . , jn | T⟩ = 1

Conversely, every normalized, nonnegative tensor gives rise to a proba-

bility distribution via Equation (3.1).

In the following, we use both notations probability distributions P and

corresponding tensors |T⟩ interchangeably. Specifically,we define specific

correlation scenarios for probability distributions P and link them with

the positive ranks for the corresponding nonnegative tensors |T⟩.

3.1.1 Classical correlations from (Ω, G)-structures

We now define two correlation scenario sets that can be characterized

via positive ranks.

Λ

with Λ ∈ [r]

X1|Λ X2|Λ Xn |Λ

P ∈ CCorr(n, d, r)

· · ·

Figure 3.2: The classical correlation sce-

nario defined in Equation (3.2). The joint

probability distribution arises from a

joint hidden variable that is shared be-

tween n parties.



3.1 Classical correlations 35

First, we define the set

CCorr(n, d, r)

as the set of probability distributions on n parties with local dimension d
arising from local distributions conditioned on a shared hidden variable

taking values in {1, . . . , r} (see Figure 3.2), i.e.

P(X1 = j1, . . . , Xn = jn) =
r∑

α=1

P(Λ = α)
n∏

i=1

P(Xi = ji |Λ = α) (3.2)

where X1, . . . , Xn are random variables taking values in {1, . . . , d}.

with rankΩ(|ψ⟩) ⩽ r

|ψ⟩ ∼

P ∈ CQCorrΩ(n, d, r)

Figure 3.3: The quantum-classical cor-

relation scenario for a trivial group ac-

tion G. The state |ψ⟩ admits an Ω-

decomposition with rankΩ(|ψ⟩) ⩽ r.
Eachof thenmeasurements is performed

locally and outputs a d-dimensional ran-

dom variable.

Second, we define the set

CQCorr(Ω,G)(n, d, r)

for a given WSC Ω and a group action G on Ω as the set of all n-partite
probability distributions P arising as

P(X1 = j1, . . . , Xn = jn) = ⟨ψ| A[1]
j1

⊗ · · · ⊗ A[n]
jn |ψ⟩

where (
A[i]

j

)d

j=1

are POVMs
2
that are G-symmetric, i.e. the measurement on position i 2: A positive operator-valued measure-

ment (POVM) is defined by a family of

psd matrices Ej that satisfy the normal-

ization condition

k∑
j=1

Ej = 1.

This describes a measurement on a state

ρ with probability distribution

P(X = j) = tr(Ejρ).

coincides with the measurement on gi for every g ∈ G. In other words,

we have that A[gi]
j = A[i]

j for every g ∈ G. Moreover, the state |ψ⟩ satisfies
the constraint that

rank(Ω,G)(|ψ⟩) ⩽ r.

We refer to Figure 3.3 for an illustration of this scenario.

If, for example, Ω = Θn is a cycle with n vertices, then

CQCorrΘn(n, d, r)

is the set of all n-partite probability distributions obtained from an MPS

|ψ⟩with bond dimension at most r via measurements on each local space.

For the cyclic group G = Cn,

CQCorr(Θn ,Cn)(n, d, r)

is the set of probability distributions obtained from a ti MPS |ψ⟩ with

bond dimension at most r via identical measurements on each local

space.

3.1.2 A correspondence to positive tensor ranks

In the following, we show that the sets

CCorr(n, d, r) and CQCorr(Ω,G)(n, d, r)

are characterized by the positive tensor ranks introduced in Section 2.3.
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For this purpose, let |T⟩ be the corresponding tensor to the probability

distribution P as defined in Equation (3.1).

First, we show the correspondence for classical probability distributions.

Note that a similar result has also been proven in [80].

Theorem 3.1.1 (The nonnegative rank and classical correlations)

The following statements are equivalent:

(i) nn-rankΣn(|T⟩) ⩽ r
(ii) P ∈ CCorr(n, d, r).

The same equivalence holds for nn-rank(Σn ,Sn) with the additional

constraint in (ii) that the conditional probability distributions

P(Xi = − | Z = α)

are identical for every i ∈ {1, . . . , n}.

Proof. We show the equivalence only for nn-rank(Σn ,Sn) as the other

follows analogously.

(i) =⇒ (ii): Since rank(Σn ,Sn)(|T⟩) ⩽ r there is a nonnegative decomposi-

tion

|T⟩ =
r∑

α=1

|vα⟩ ⊗ · · · ⊗ |vα⟩ . (3.3)

Define

P(Xi = j | Z = α) :=
⟨j | vα⟩∑d

j=1 ⟨j | vα⟩

and

P(Z = α) =

 d∑
j=1

⟨j | vα⟩

n

.

By definition, P(Xi = − | Z = α) is a probability distribution. Moreover,

P(Z = −) is a probability distribution since

r∑
α=1

P(Z = α) =
r∑

α=1

 d∑
j=1

⟨j | vα⟩

n

=
r∑

α=1

d∑
j1,...,jn=1

⟨j1, . . . , jn|
(
|vα⟩

)⊗n

=
d∑

j1,...,jn=1

⟨j1, . . . , jn|
( r∑

α=1

|vα⟩⊗n

)

=
d∑

j1,...,jn=1

P(X1 = j1, . . . , Xn = jn) = 1

where we have used the correspondence between P and |T⟩ in the

last step. Finally, P(Xi = − | Z = α) and P(Z = −) give rise to the

probability distribution P.
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(ii) =⇒ (i): Let

P(X1 = j1, . . . , Xn = jn) =
r∑

α=1

P(Z = α)
n∏

i=1

P(Xi = ji | Z = α).

Defining

|v[i]α ⟩ :=
r∑

j=1

P(Xi = j|Z = α) · P(Z = α)
1
n |j⟩

gives rise to nonnegative vectors in the computational basis. Since all

conditional distributions P(Xi = −|Z = α) are identical, we have that

|v[i]α ⟩ = |v[j]α ⟩ =: |vα⟩ for every i, j ∈ {1, . . . , n}. It is immediate that

Equation (3.3) holds.

We now prove that elements of CQCorr(Ω,G)(n, d, r) are precisely these

tensors with psd-rank(Ω,G)(|T⟩) ⩽ r if G is a external group action on

Ω.
3
The special case Ω = Σn and G = {e} is proven in [69, Theorem 3: See Definition 2.2.5 for external group

actions.
13].

Theorem 3.1.2

Let Ω be a WSC and G an external group action on Ω. The following

statements are equivalent:

(i) P ∈ CQCorr(Ω,G)(n, d, r).
(ii) psd-rank(Ω,G)(|T⟩) ⩽ r.

We first need a preparatory lemma about the joint diagonalizability of

G-invariant families of matrices.

Lemma 3.1.3 (G-symmetric matrix diagonalization)

Let Ω be a wsc and G an external group action on Ω. Moreover, let

K[i] ∈ Her
I F̃i

(C) for i ∈ [n] be Hermitian matrices such that

⟨gβ|K[gi] |gβ′⟩ = ⟨β|K[i] |β′⟩ for all β, β′ ∈ I F̃i

Then, there exists a joint eigendecomposition of all matrices K[i]

K[i] =
m∑
ℓ=1

λ
[i]
ℓ |w[i]

ℓ ⟩ ⟨w[i]
ℓ |

such that

⟨gβ |w[gi]
ℓ ⟩ = ⟨β |w[i]

ℓ ⟩ and λ
[gi]
ℓ = λ

[i]
ℓ

Proof. Choose i1, . . . , im ∈ [n] representatives of the m orbits of the

group action G on [n]. Computing the eigenvectors and eigenvalues of

K[i1], . . . , K[im ]
we obtain a generating set of eigendecompositions for
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every matrix K[i]
by setting

λ
[i]
ℓ = λ

[gik ]
ℓ and |w[i]

ℓ ⟩ =
∑

β∈I F̃ik

|gβ⟩ ⟨β |w[ik ]
ℓ ⟩

for g ∈ G and a representative ik such that i = gik. Since the action

is external, this is independent of the choice of g, which shows the

statement.

We are now ready to prove the main statement of this section.

Proof of Theorem 3.1.2. (i) =⇒ (ii): Let P ∈ CQCorr(Ω,G)(n, d, r). By defi-

nition, there exists a state

|ψ⟩ =
∑

α∈I F̃

|v[1]α|1
⟩ ⊗ · · · ⊗ |v[n]α|n

⟩

with |I| ⩽ r and G-invariant POVMs

(
A[i]

j

)d

j=1
such that

⟨j1, . . . , jn | T⟩ = tr
(

A[1]
j1

⊗ · · · ⊗ A[n]
jn |ψ⟩ ⟨ψ|

)
.

Define

B[i]
j :=

(
X[i]
)†

A[i]
j X[i]

with X[i] =
∑

β∈I F̃i

|v[i]β ⟩ ⟨β| .

Note that B[i]
j ∈ Psd

I F̃i
(C). Moreover, we have

⟨gβ| B[gi]
j |gβ′⟩ = ⟨v[gi]

g β | A[gi]
j |v[gi]

g β′ ⟩ = ⟨v[i]β | A[i]
j |v[i]β′ ⟩ = ⟨β| B[i]

j |β′⟩

where we have used that |v[i]β ⟩ forms a (Ω, G)-decomposition and that

A[i]
j are G-invariant. Moreover,

∑
α,α′∈I F̃

(
B[1]

j1

)
α|1 ,α′|1

· · ·
(

B[n]
jn

)
α|n ,α′|n

= ⟨ψ| A[1]
j1

⊗ · · · ⊗ A[n]
jn |ψ⟩ = Pj1,...,jn

which proves that psd-rank(Ω,G)(P) ⩽ r.

(ii) =⇒ (i): Let

⟨j1, . . . , jn | T⟩ =
∑

α,α′∈I F̃

(
B[1]

j1

)
α|1 ,α′|1

· · ·
(

B[n]
jn

)
α|n ,α′|n

= ⟨Ωr| B[1]
j1

⊗ · · · ⊗ B[n]
jn |Ωr⟩

(3.4)

be a psd (Ω, G)-decomposition of P with psd-rank(Ω,G)(P) ⩽ r = |I|.
As the last expression in Equation (3.4) suggests, we use B[i]

j to construct

a POVM and |Ωr⟩ to construct a state whose combination leads to P.
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While the matrices B[i]
j are psd, they need not form a POVM since

k∑
j=1

B[i]
j ̸= 1ri

with ri = |I F̃i |. To this end, define

S[i] :=
d∑

j=1

B[i]
j =

mi∑
ℓ=1

λ
[i]
ℓ |w[i]

ℓ ⟩ ⟨w[i]
ℓ |

with λ
[i]
ℓ > 0 being only the positive eigenvalues of S[i]

and |w[i]
ℓ ⟩ being

the G-invariant eigenvectors of the family S[1], . . . , S[n]
according to

Lemma 3.1.3. Define

T[i] =

mi∑
ℓ=1

(
λ
[i]
ℓ

)−1/2
|w[i]

ℓ ⟩ ⟨ℓ| and W [i] =

mi∑
ℓ=1

(
λ
[i]
ℓ

)1/2
|ℓ⟩ ⟨w[i]

ℓ
| .

Note that T[i] · W [i]
is a projector on

span({|w[i]
1 ⟩ , . . . , |w[i]

mi ⟩}).

Therefore, we have that

B[i]
j =

(
T[i] · W [i]

)†
· B[i]

j ·
(

T[i] · W [i]
)

. (3.5)

Moreover, we have that

⟨gβ| T[gi] = ⟨β| T[i]
and W [gi] |gβ⟩ = W [i] |β⟩ (3.6)

since the vectors |w[i]
ℓ ⟩ are G-invariant. We now define a POVM (A[i]

j )d
j=1

via

A[i]
j =

(
T[i]
)†

· B[i]
j · T[i].

We have that A[i]
j is psd and

d∑
j=1

A[i]
j = 1mi

which shows that A[i] :=
(

A[i]
j

)
j=1,...,d

is indeed a POVM for each i ∈ [n].
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Moreover,

(
A[i]
)n

i=1
is a G-invariant family since

A[gi]
j =

(
T[gi]

)†
· B[gi]

j · T[gi]

=
∑

β,β′∈I F̃i

(
⟨β| T[gi]

)†
⟨β| B[gi]

j |β′⟩ ⟨β′| T[gi]

=
∑

β,β′∈I F̃i

(
⟨gβ| T[gi]

)†
⟨gβ| B[gi]

j |gβ′⟩ ⟨gβ′| T[gi]

=
∑

β,β′∈I F̃i

(
⟨β| T[i]

)†
⟨β| B[i]

j |β′⟩ ⟨β′| T[i] = A[i]
j

where we have used that β 7→ gβ is a bĳection between I F̃i and I F̃gi
in

the third step, and Equation (3.6) in the fourth step. Moreover,

|ψ⟩ := W [1] ⊗ · · · ⊗ W [n] |Ωr⟩

is a state with rank(Ω,G)(|ψ⟩) ⩽ r since

⟨ψ |ψ⟩ = ⟨Ωr|
(

W [1]
)†

W [1] ⊗ · · · ⊗
(

W [n]
)†

W [n] |Ωr⟩

= ⟨Ωr| S[1] ⊗ · · · ⊗ S[n] |Ωr⟩

=
d∑

j1,...,jn=1

∑
α,α∈I F̃

(
B[1]

j1

)
α|1 ,α′|1

· · ·
(

B[n]
jn

)
α|n ,α′|n

=
d∑

j1,...,jn=1

⟨j1, . . . , jn | T⟩ = 1

where we have used that the tensor |T⟩ represents a probability distribu-

tion in the last step. Finally, the defined POVMs

(
A[i]

j

)d

j=1
and the state

|ψ⟩ generate the probability distribution P, since

⟨ψ| A[1]
j1

⊗ · · · ⊗ A[n]
jn |ψ⟩ =

∑
α,α′∈I F̃

(
B[1]

j1

)
α|1 ,α′|1

· · ·
(

B[n]
jn

)
α|n ,α′|n

= ⟨j1, . . . , jn | T⟩

where we have used Equation (3.5) in the first step and Equation (3.4) in

the second step.

3.2 Mixed state correlation scenarios

In the following, we consider correlation scenarios where the output is a

density matrix instead of a probability distribution. We will generalize

the set CQCorr(Ω,G)(n, d, r) to this setting and show that the puri-rank
of the output density matrix characterizes these correlations.

We define the set QQCorr(Ω,G)(n, d, r) as the set of all density matrices

arising as

ρ = (E1 ⊗ · · · ⊗ En) (|ψ⟩ ⟨ψ|)
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where (Ei)
n
i=1 is a family of quantum channels

4
which is G-invariant, 4: A quantum channel describes the

most general transformation of a quan-

tum state. It is a map

E : Matd1 (C) → Matd1 (C)

that is completely positive, i.e.

(1n ⊗ E)(ρ) is psd

for every n ∈ N and every psd matrix ρ,

and trace preserving, i.e.

tr(E(ρ)) = tr(ρ).

A quantum channel is thus called com-

pletely positive trace preserving (cptp)

map.

i.e.

Ei = Egi.

Moreover, |ψ⟩ satisfies the condition rank(Ω,G)(|ψ⟩) ⩽ r. We refer to

Figure 3.4 for a sketch.

with rankΩ(|ψ⟩) ⩽ r

|ψ⟩ ∼

· · ·E1 E2 En

ρ ∈ QQCorrΩ(n, d, r)

Figure 3.4: The fully quantum scenario

for a trivial group action G. The state

|ψ⟩ admits an Ω-decomposition with

rankΩ(|ψ⟩) ⩽ r. Each of the n quan-

tum channels Ei is applied locally. The

global state ρ is a density matrix in the

n-partite matrix tensor product space.

So, for example, when Ω = Θn is a cycle graph of length n, then
QQCorrΘn(n, d, r) is the set of all n-partite density matrices obtained

from a MPS |ψ⟩ with rankΘn(|ψ⟩) ⩽ r and applying local quantum

channels on each local space. If additionally G = Cn is the cyclic group,

then QQCorr(Θn ,Cn)(n, d, r) is the set of density matrices obtained from

a MPS |ψ⟩ with rank(Θn ,Cn)(|ψ⟩) ⩽ r and applying identical quantum

channels on each local space.

We now prove the quantum version of Theorem 3.1.2, namely that

elements ofQQCorr(Ω,G)(n, d, r) are precisely psdmatrices ρwith tr(ρ) =
1 and puri-rank(Ω,G)(ρ) ⩽ r.

Theorem 3.2.1 (The puri-rank and quantum scenarios)

Let Ω be a WSC, G an external group action, and ρ an n-partite
density matrix. The following statements are equivalent:

(i) ρ ∈ QQCorr(Ω,G)(n, d, r).
(ii) puri-rank(Ω,G)(ρ) ⩽ r.

The proof of this statement is similar to that of Theorem 3.1.2. The

proof idea of (ii) =⇒ (i) is depicted in Figure 3.5 for one-dimensional

purification forms, i.e. a Λn-purification.

Proof. (i) =⇒ (ii): Let ρ be a density matrix in QQCorr(Ω,G)(n, d, r). By
definition, there exists a state

|ψ⟩ =
∑

α∈I F̃

|v[1]α|1
⟩ ⊗ · · · ⊗ |v[n]α|n

⟩

such that rank(Ω,G)(|ψ⟩) ⩽ r = |I| and G-invariant family of quantum

channels

Ei(−) :=
di∑

k=1

(
A[i]

k

)
· − ·

(
A[i]

k

)†
(3.7)

with the condition that A[i]
k = A[gi]

k . We now define L ∈ Matd,d1(C)⊗
· · · ⊗ Matd,dn(C) such that

(a) ρ = LL†

(b) rank(Ω,G)(L) ⩽ r

which proves (ii). For i ∈ [n] and β ∈ I F̃i let

L[i]
β :=

di∑
k=1

A[i]
k |v[i]β ⟩ ⟨k| . (3.8)
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Further, set

L =
∑

α∈I F̃

L[1]
α|1

⊗ · · · ⊗ L[n]
α|n

.

By definition, we have that rank(Ω,G)(L) ⩽ r. It remains to prove (a). But

this follows from

LL† =
d∑

k1,...,kn=1

(
A[1]

k1
⊗ · · · ⊗ A[n]

kn

)
|ψ⟩ ⟨ψ|

(
A[1]

k1
⊗ · · · ⊗ A[n]

kn

)†

= (E1 ⊗ · · · ⊗ En)(|ψ⟩ ⟨ψ|) = ρ

where we have used Equation (3.8) in the first step and Equation (3.7) in

the second.

(ii) =⇒ (i): Let ρ = LL†
where

L =
∑

α∈I F̃

L[1]
α|1

⊗ · · · ⊗ L[n]
α|n

be an (Ω, G)-purificiation with puri-rank(Ω,G)(ρ) ⩽ r = |I|.

Defining the completely positive maps

Ni(−) :=
d′∑

k=1

(
B[i]

k

)
· − ·

(
B[i]

k

)†
with

(
B[i]

k

)
ℓ,β

=
(

L[i]
β

)
ℓ,k

we have that

ρ = (N1 ⊗ · · · ⊗ Nn)(|Ωr⟩ ⟨Ωr|) (3.9)

where |Ωr⟩ is the structure tensor defined in Subsection 2.3.4. However,

Ni is neither trace-preserving nor a G-invariant family, and |Ωr⟩ is not
normalized. For this reason, define

S[i] :=
d′∑

k=1

(
B[i]

k

)†
·
(

B[i]
k

)
=

mi∑
ℓ=1

λ
[i]
ℓ |w[i]

ℓ ⟩ ⟨w[i]
ℓ |

where |w[i]
ℓ ⟩ is aG-invariant eigendecompositionof the familyS[1], . . . , S[n]

according to Lemma 3.1.3. Similarly to the proof of Theorem 3.1.2 we

define

T[i] :=
mi∑
ℓ=1

(
λ
[i]
ℓ

)−1/2
|w[i]

ℓ ⟩ ⟨ℓ|

W [i] :=
mi∑
ℓ=1

(
λ
[i]
ℓ

)1/2
|ℓ⟩ ⟨w[i]

ℓ
|

(3.10)

and completely positive maps

Ei(ρ) :=
d′∑

k=1

(
A[i]

k

)
· ρ ·

(
A[i]

k

)†
with A[i]

k := B[i]
k · T[i]. (3.11)

Note that (Ei)i=1,...,n is by definition a G-invariant family of quantum

channels. Moreover, by the reasoning of the proof of Theorem 3.1.2,

|ψ⟩ = W [1] ⊗ · · · ⊗ W [n] |Ωr⟩ (3.12)
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L[1] L[2] L[3]

L̄[1] L̄[2] L̄[3]

(a)

?
=

|ψ⟩
M1

A[1] A[2] A[3]

W [1] W [2] W [3]

Ā[1] Ā[2] Ā[3]

(e)

(b)

|Ωr⟩

=

(c)

T[i] · W [i] = P

=

(d)

Figure 3.5: Proof of Theorem 3.2.1 (ii)

=⇒ (i) on a 1d chain, i.e. proving

the equality of expressions (a) and (e).

(a) is the local purification form with

puri-rankΛn
(ρ) ⩽ r. (b) When rearrang-

ing the wires, we obtain the definition of

a Ω-decomposition with the structure-

tensor |Ωr⟩ according to Equation (2.8).

This decomposition can also be under-

stood as applying a completely positive

map to |Ωr⟩ according to Equation (3.9).

In (c), we insert a projector P[i]
of the

space where the tensor L[i]
acts non-

trivially and factorize it into a product

T[i] ·W [i]
according to Equation (3.10). To

obtain (d) we merge the upper box (T[i]
)

with the red box (Equation (3.11)). This

gives rise to a normalized state (Equa-

tion (3.12)) together with local quantum

channels (e).

defines a normalized state with rank(Ω,G)(|ψ⟩) ⩽ r. Moreover,

(E1 ⊗ · · · ⊗ En) (|ψ⟩ ⟨ψ|) = (N1 ⊗ · · · ⊗ Nn) (|Ωr⟩ ⟨Ωr|) = ρ

which proves the statement.

Note that Theorem 3.2.1 implies Theorem 3.1.2 when restricting to

diagonal density matrices. This follows from the fact that every quantum

channel that outputs only classical states corresponds to a POVM.

More specifically, every POVM E1, . . . , Ek gives rise to a quantum chan-

nel

E : Matd(C) → Matk(C)

ρ →
k∑

i=1

|i⟩ ⟨i| tr(Eiρ)

Conversely, every quantum channel that maps into the space of diagonal

matrices can be specified by

E : Matd(C) → Matk(C)

ρ 7→
r∑

i=1

|i⟩ ⟨i| tr(Aiρ)

since |i⟩ ⟨i| for i ∈ [k] is a basis of the space of diagonal matrices in

Matk(C). Since E is positive, we have that tr(Aiρ) ⩾ 0 for all psdmatrices

ρ. This implies that Ai is psd. Moreover, since E is trace preserving,

tr

( k∑
i=1

Aiρ

)
= tr(ρ)
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for every ρ. But this shows that
5

5: Given A ∈ Herk(C), the condition

tr(AB) = tr(B) for every B ∈ Herk(C)
implies that A = 1. This follows since

tr((A − 1)B) = 0

for every B. Since tr is an inner product

on Herk(C), we can conclude that A −
1 = 0.

k∑
i=1

Ai = 1

and hence (Ai)i=1,...,k is a POVM.

To summarize, Theorem 3.1.2 and Theorem 3.2.1 reveal that bounding

psd-rank and puri-rank leads to an information-theoretic interpretation,

elucidating correlations arising from quantum states with particular

entanglement structures. We will revisit these correlation scenarios in

Section 4.3, demonstrating that the sets of correlation scenarios do not

exhibit topological closure for certain configurations of Ω and G.
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decompositions 4

It is well-known that low-rank approximations of matrices exhibit desir- This chapter is based on Section 1, 3, 4,

and 5 of [74].
able properties: For every matrix, there is a best low-rank approximation

with a fixed error, and any element closer to the original matrix must

have a larger rank. In other words, the approximate rank

rankε(|T⟩) := min
∥|W⟩−|T⟩∥⩽ε

rank(|W⟩) (4.1)

coincides with the exact rank when ε is small enough.

4.1 Gaps between ranks and

border ranks . . . . . . . . . 46

4.1.1 Standard tensor decomposi-

tion . . . . . . . . . . . . . . . . 47
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The multipartite tensor rank behaves very differently: There exist tensors

|T⟩ where the border rank

rank(|T⟩) := lim
ε→0

rankε(|T⟩)

is strictly smaller than the rank of |T⟩ (see Figure 4.1). For the mathe-

matician, this means that the rank is not lower semi-continuous. This is

equivalent to the statement that the set of tensors whose rank is upper

bounded by a constant r

T :=
{
|T⟩ ∈ V⊗n : rank(|T⟩) ⩽ r

}
is topologically not closed since there are sequences in T whose limit

is not in T . As a consequence, optimization problems over such sets,

such as computing an optimal low-rank approximation, are generally

ill-posed [114]. It is known that tensor decompositions with three or more

local spaces exhibit a gap between rank and border rank [78], and so

do tensor network decompositions containing loops [77, 29, 5], where

some of these results concern symmetric decompositions of invariant

tensors.

V⊗n

|T⟩
|Tε⟩

t-rank(|Tε⟩)
t-rank(|T⟩)

ε

Figure 4.1: Border rank. Given a tensor

|T⟩ in an n-fold tensor product space

and a certain type of rank t-rank, if
there exists a family of tensors (|Tε⟩)ε>0
such that |Tε⟩ → |T⟩ for ε → 0 and

t-rank(|Tε⟩) < t-rank(|T⟩) for all ε > 0,
we say that t-rank exhibits a gap between

rank and border rank.

In this chapter, we prove that several locally positive and invariant decom-

positions exhibit a gap between rank and border rank, as summarized in

Figure 4.2. This includes positive and/or symmetric versions of Matrix

Product States (MPS) and Matrix Product Operators (MPO), as well as

the multipartite generalizations of the psd-rank.

We leverage the gaps between border ranks and ranks together with

the connection to quantum correlations presented in Chapter 3 to show

that:
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rank

psd-rank
puri-rank

nn-rank
sep-rank

Type

of rank

Decomposition

type

Standard Symmetric Cyclic
Transl.

invariant

Tree
I
m
p
o
s
i
n
g
s
t
r
o
n
g
e
r

p
o
s
i
t
i
v
i
t
y
c
o
n
s
t
r
a
i
n
t
s

Yes (n ⩾ 3)

[13, 78]

Yes (n ⩾ 3)

[78]

Yes (n ⩾ 3)

[5, 29, 77]

Yes (n ⩾ 3)

[5, 29]

No

[5, 77]

Yes (n ⩾ 5)

(Sec. 4.1.1)

Yes (n ⩾ 3)

(Sec. 4.1.1)

?

Yes (n ⩾ 17)

(Sec. 4.1.2)

No

(Thm. 4.2.6)

No

(Thm. 4.2.2)

No

(Thm. 4.2.2)

Yes (n ⩾ 3)

(Sec. 4.1.3)

Yes (n ⩾ 5)

(Sec. 4.1.2)

No

(Thm. 4.2.6)

Figure 4.2: Is there a gap between rank and border rank in an n-fold tensor product space? This table summarizes known

results and the contributions of this paper (marked boldface): We prove that gaps persist when imposing positivity constrains

corresponding to quantum correlation scenarios (second row), and that certain gaps disappear for stronger positivity constrains

corresponding to classical correlation scenarios (third row). The types of ranks and of decompositions are defined in Chapter 2.

▶ If a tensor network geometry (i.e. theWSC) contains a loop, comput-

ing the best approximation with a fixed positive rank is ill-posed.

Specifically, given a mixed state ρ, there is typically no mixed state

σ which is the best approximation among all decompositions with

a positive rank bounded by r, because for any ε > 0 there is an

ε-close mixed state of rank r, while the rank of ρ is strictly greater

than r.
▶ The set of probability distributions generated by amultipartite state

with local measurements (Figure 3.3) is not closed. Consequently,

it is impossible to verify the necessity of a certain resource state

from sampling the distribution, even in arbitrarily many rounds.

The same applies to generating multipartite mixed states from local

quantum channels (Figure 3.4).

▶ We provide correlation scenarios where the quantum case is fragile

with respect to approximations, while the classical case is robust.

This shows a novel type of separation between these two scenarios.

4.1 Gaps between ranks and border ranks

Here we provide examples of tensor decompositions with gaps sum-

marized in Figure 4.2. Throughout, the gaps between ranks and border

ranks are established by giving explicit examples of tensors exhibiting

them.

Note that for every (Ω, G)-rank, we define the corresponding border

(Ω, G)-rank as the minimal (Ω, G)-rank of a sequence approach to the

original element. More precisely

rank(Ω,G)(|T⟩) ⩽ r ⇐⇒ ∃(|Tn⟩)n∈N : |Tn⟩ → |T⟩
and rank(Ω,G)(|Tn⟩) ⩽ r.
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Wedefinepsd-rank(Ω,G),nn-rank(Ω,G),puri-rank(Ω,G), and sep-rank(Ω,G)

analogously.

4.1.1 Standard tensor decomposition

Since the matrix rank does not exhibit a gap between border rank and

rank, systems of size n = 3 are the smallest examples with a gap between

border rank and rank. While this has been extensively studied for the

standard and symmetric tensor rank
1
, we extend these investigations in 1: See for example [78] and references

therein.
this subsection to psdmatrices. The nonnegative standard decomposition

is treated in Section 4.2.1.

For the standard (unconstrained) tensor decomposition, the unnormal-

ized n-partite W-state

|Wn⟩ := |0, . . . , 0, 1⟩+ |0, . . . , 1, 0⟩+ . . . + |1, 0, . . . , 0⟩

exhibits a gapbetweenborder rank and rank aswell as between symmetric

border rank and rank for system sizes n ⩾ 3. Specifically, for ε > 0, the
family of tensors

|Wε
n⟩ =

1
ε

(
|0⟩+ ε |1⟩

)⊗n − 1
ε
|0, . . . , 0⟩ (4.2)

implies that

rank(Σn ,Sn)(|Wn⟩) = rankΣn(|Wn⟩) = 2 (4.3)

since |Wε
n⟩ → |Wn⟩ as ε → 0. On the other hand, we obtain the following

statement:

Proposition 4.1.1

For n ⩾ 2, we have that rankΣn(|Wn⟩) = n.

Proof. That rankΣn(|Wn⟩) ⩽ n is clear by the definition of |Wn⟩. We

prove that rankΣn(|Wn⟩) ⩾ n by induction. The case n = 2 is clear, since

|W2⟩ ∈ C2 ⊗ C2
corresponds to the matrix

W2 = |0⟩ ⟨1|+ |1⟩ ⟨0| =
(

0 1
1 0

)
.

Therefore |W2⟩ has Σ2-rank
2 2. 2: This is precisely the matrix rank.

For the induction step n → n + 1, suppose that |Wn+1⟩ has

rankΣn+1(|Wn+1⟩) ⩽ n

with a decomposition

|Wn+1⟩ =
n∑

α=1

|v[1]α ⟩ ⊗ · · · ⊗ |v[n]α ⟩ .

For the first local system, we will prove that

(a) The vectors {|v[1]α ⟩}α=1,...,n span C2
.
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(b) |v[1]β ⟩ = cβ |0⟩ for every β ∈ {1, . . . , n}.

These two conditions contradict each other, hence proving the statement

of the proposition.

To prove (a) assume that the family {|v[1]α ⟩}α=1,...,n does not span C2
.

Then there exists a non-zero vector |x⟩ ∈ C2
such that ⟨x | v[1]α ⟩ = 0 for

every α. Appyling ⟨x| to the first tensor factor of |Wn+1⟩ leads to

0 = ⟨x | 0⟩ |Wn⟩+ ⟨x | 1⟩ |0, 0, 0, . . . , 0⟩ .

Since |Wn⟩ and |0, . . . , 0⟩ are linearly independent this implies that

|x⟩ = 0, which is a contradiction.

To prove (b), note that

rankΣn(|Wn⟩+ b |0, . . . , 0⟩) ⩾ rankΣn(|Wn⟩) ⩾ n

for every b ∈ R since

|Wn⟩ = A⊗n
(
|Wn⟩+ b |0, 0, 0, . . . , 0⟩

)
with

A : |0⟩ 7→ |0⟩ , |1⟩ 7→ |1⟩ − b
n
|0⟩ .

This shows that

rankΣn

(
|Wn⟩+ b |0, . . . , 0⟩

)
⩾ rankΣn(|Wn⟩)

since the rank is non-increasing under local operations. Now let β ∈
{1, . . . , r} be fixed and choose |x⟩ ∈ C2

such that ⟨x | v[1]β ⟩ = 0. Applying

⟨x| to the first tensor factor of |Wn+1⟩ we obtain

n∑
α=1
α ̸=β

⟨x | v[1]α ⟩ |v[2]α ⟩ ⊗ · · · ⊗ |v[n]α ⟩ = ⟨x | 0⟩Wn + ⟨x | 1⟩ |0, 0, 0, . . . , 0⟩ .

Since the sum on the left hand side contains n − 1 elementary tensors

and the right hand side has rank at least n, if ⟨x | 0⟩ ̸= 0, it follows that

⟨x | 0⟩ = 0. But this implies that

|v[1]β ⟩ = cβ |0⟩ .

Equation (4.3) and Proposition 4.1.1 imply the following corollary:

Corollary 4.1.2

For n ⩾ 3, the standard and the symmetric tensor rank exhibit a gap.

More specifically

rank(Σn ,Sn)(|Wn⟩) = rankΣn(|Wn⟩) = 2

< n = rankΣn(|Wn⟩) ⩽ rank(Σn ,Sn)(|Wn⟩)
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We now show that the |Wn⟩ also exhibits a gap between rank and border

rank for the psd Σn-rank. Since rankΣn(|Wn⟩) = n and

rankΣn(|T⟩) ⩽ psd-rankΣn
(|T⟩)2

(see Lemma 2.3.1) we have psd-rankΣn
(W5) ⩾ 3 and psd-rankΣn

(Wn) =

Ω(
√

n).3 It is not known if this lower bound is tight. 3: Thismeans thatpsd-rankΣn
is asymp-

totically lower bounded by D ·
√

n for

some constant D.On the other hand, for ε > 0, the family of tensors |W̃ε
n⟩ defined by psd

matrices

Aε
0 =

C
n−1
√

ε

(
1 e

iπ
n

e−
iπ
n 1

)
, Aε

1 = ε

(
1 1
1 1

)
(4.4)

for a suitable constant C ∈ R provide an arbitrarily close approximation

of |Wn⟩ which implies that

psd-rankΣn(|Wn⟩) = psd-rank(Σn ,Sn)(|Wn⟩) = 2.

In other words, there is a border rank separation for n-partite psd-

decompositions with n ⩾ 5.

For the symmetric psd rank of |W3⟩ we obtain a tighter lower bound.

Proposition 4.1.3

We have that

3 ⩽ psd-rank(Σn ,Sn)
(W3).

Proof. Assume that psd-rank(Σn ,Sn)
(W3) = 2. Then there exists a sym-

metric psd-decomposition

⟨j1, j2, j3 |W3⟩ =
2∑

α,β=1

(
Aj1
)

α,β ·
(

Aj2
)

α,β ·
(

Aj3
)

α,β .

This can be expressed equivalently as

⟨j1, j2, j3 |W3⟩ = ⟨M| Aj1 ⋆ Aj2 ⋆ Aj3 |M⟩

where |M⟩ = (1, . . . , 1)t
and ⋆ is the Hadamard product.

4
We claim that 4: The Hadamard Product ⋆ of two ma-

trices is defined as

(X ⋆ Y)α,β = Xα,β · Yα,β.

A0 and A1 in the decomposition have rank 1. Assume for example that

A0 has full rank; it is positive definite, therefore A0 ⋆ A0 ⋆ A0 is positive

definite by Schur’s product theorem (see [65, Theorem 7.5.3.]). But this

implies that

0 = ⟨0, 0, 0 |W3⟩ = ⟨M| A0 ⋆ A0 ⋆ A0 |M⟩ > 0.

The same argument applies to A1.

Since A0, A1 have rank 1, we can parametrize them as

Aj =

(
aj,0

√aj,0aj,1 exp(i2πφj)√aj,0aj,1 exp(−i2πφj) aj,1

)

where aj,0, aj,1 ⩾ 0. Since ⟨0, 0, 0 |W3⟩ = ⟨1, 1, 1 |W3⟩ = 0, we have

that aj,0 = aj,1 for j = 0, 1 as well as φj = 1/2 which implies that
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⟨j1, j2, j3 |W3⟩ = 0 for all j1, j2, j3 ∈ {0, 1}.

For the non-symmetric case in the tripartite scenario the existence of a

gap between border rank and rank is still open. We summarize these

observations in the following corollary:

Corollary 4.1.4

For n ⩾ 5, there is a gap between psd-rankΣn and psd-rankΣn
. More

specifically

psd-rankΣn(|Wn⟩) = psd-rank(Σn ,Sn)(|Wn⟩) = 2

and √
n ⩽ psd-rankΣn

(|W3⟩).

For the symmetric psd rank, the gap is already present for n = 3,
since

psd-rankΣn
(|Wn⟩) = 3.

In contrast to the psd-decomposition, the nonnegative (and subsequently

also the separable) decomposition exhibit no gap between border rank

and rank in the n-partite case for arbitrary n, as we will see Section 4.2.

4.1.2 Cyclic translational invariant decomposition

We now prove the existence of gaps between border rank and rank for ti

cyclic decompositions. We obtain border rank separations for all types of

decompositions. Similar to Section 4.1.1 the n-partite W-state is can be

used as an example showing the gaps.

We start with the unconstrained decomposition.

Proposition 4.1.5

For the n-partite W-state we have that

rank(Θn ,Cn)(|Wn⟩) = 2 <
√

n ⩽ rank(Θn ,Cn)(|Wn⟩)

Therefore, there is a gap for n ⩾ 5.

Proof. For rank(Θn ,Cn)(|Wn⟩) = 2, we use the construction by Christandl

et al. [29]. We define the approximate decomposition using |vε
12⟩ =

|vε
21⟩ = 0 and

|vε
11⟩ =

1
ε1/n

(
1
ε

)
and |vε

22⟩ =
1

ε1/n

(
(−1)

1
n

0

)

for arbitrary ε > 0.

For the lower bound

√
n ⩽ rank(Θn ,Cn)(|Wn⟩)we refer to [40, Proposition

23] which relies on the irreducible form of MPS [35].
5

5: A weaker lower bound

rank(Θn ,Cn)(|Wn⟩) ⩾ Ω(n1/3)

was shown by Pérez-García et al. [97]

using Wieland’s inequality [106].

For the ti psd-decomposition, we obtain the following result:
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Proposition 4.1.6

We have that

psd-rank(Θn ,Cn)(|Wn⟩) = 2

and

Ω(n1/4) ⩽ psd-rank(Θn ,Cn)
(|Wn⟩)

In particular, there is a gap for n ⩾ 17.

Proof. To show psd-rank(Θn ,Cn)(|Wn⟩) = 2, we define the psd matrices(
Bε

j

)
α,α′ ;β,β′

= δα,α′ · δβ,β′ ·
(

Aε
j

)
α,β

where Aε
j is defined in Equation (4.4). We obtain

2∑
αi ,βi=1

(
Bε

j1

)
α1,α2;β1,β2

· · ·
(

Bε
jn

)
αn ,α1;βn ,β1

= ⟨j1, . . . , jn |Wn⟩+O
(

ε1+ 1
n−1

)
.

Moreover, using Lemma 2.3.1 together with Proposition 4.1.5 we obtain

that

psd-rank(Θn ,Cn)
(|Wn⟩) ⩾ Ω

(
n1/4

)
(4.5)

and in particular psd-rank(Θn ,Cn)
(|Wn⟩) ⩾ 3 as soon as n ⩾ 17. This

proves the separation between border rank and rank for the t.i. cyclic

psd-decomposition.

For the ti nonnegative decomposition we construct a tensor with a

separation between border rank and rank for every odd n ⩾ 5. Consider
again the tensor |Wn⟩. By the previous discussion, we have

nn-rank(Θn ,Cn)(|Wn⟩) ⩾ rank(Θn ,Cn)(|Wn⟩) ⩾
√

n.

In order to prove an upper bound fornn-rank(Θn ,Cn), we use the following

representation of a nonnegative cyclic decomposition

⟨j1, . . . , jn | T⟩ = tr(Aj1 · · · Ajn),

where Aj ∈ Mr(C) and (Aj)α,β ⩾ 0. It follows that the rank of the

decomposition is specified by the size of the matrices Aj.
6

6: For details, we refer to Example 2.3.6.

Proposition 4.1.7

We have that

nn-rank(Θn ,Cn)(|Wn⟩) ⩽ 2

if n is odd.

Proof. Let

Aε
0 =

1
n−1
√

ε

(
0 1
1 0

)
=

1
n−1
√

ε
Pτ Aε

1 = εI2
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bemultiples of a nonnegative representation of the cyclic group on {1, 2},
where τ is the permutation 1 7→ 2 and 2 7→ 1 and Pτ the corresponding

permutation matrix. We have

⟨j1, . . . , jn | Ŵε
n⟩ :=

1
2

tr
(

Aε
j1 · · · Aε

jn

)
=

1
2

 0 : j1 + . . . + jn even

εk−1+ k−1
n−1 : j1 + . . . + jn odd

where k := j1 + · · ·+ jn. This implies that |Ŵε
n⟩ = 1

2 |Wn⟩+O(ε2).

Note that this construction generalizes to every n and p | (n − 1) by
replacing {1, 2} with {1, . . . , p}, and τ by the translation on {1, . . . , p}.
Since the corresponding permutation matrices Aε

0 and Aε
1 are of size

p × p, it follows that nn-rank(Θn ,Cn)(|Wn⟩) ⩽ p.

Corollary 4.1.8

If n is odd, we have that

nn-rank(Θn ,Cn)(|Wn⟩) = 2 <
√

n ⩽ rank(Θn ,Cn)(|Wn⟩)
⩽ nn-rank(Θn ,Cn)(|Wn⟩).

This implies that there is a gap for n ⩾ 5.

4.1.3 Cyclic decompositions

In the following, we consider the cyclic decomposition without transla-

tional invariance. In contrast to Section 4.1.2, the n-partite W-state is not

an appropriate example to show a gap. This is because

rankΘn(|Wn⟩) = rankΘn(|Wn⟩) = 2

since

|Wn⟩ =
2∑

α1,...,αn=1

|vα1,α2⟩ ⊗ |wα2,α3⟩ ⊗ · · · ⊗ |wαn ,α1⟩

where

|vα,β⟩ = δα,2δβ,1 |0⟩+ δα,2δβ,2 |1⟩

and

|wα,β⟩ = δα,β |0⟩+ δα,1δβ,2 |1⟩ .

Regarding unconstrained decompositions, Barthel et al. [5] prove that

for the Θn-rank, there is a gap between border rank and rank for the

two-domain state, given by

|τ⟩ :=
k∑

α=1

|α, α⟩⊗n

+
n−1∑
i=0

k∑
α ̸=β=1

|α, α⟩⊗i ⊗ |α, β⟩ ⊗ |β, β⟩⊗(n−i) ⊗ |β, α⟩ .
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In particular, they prove that rankΘn(|τ⟩) ⩽ k < rankΘn(|τ⟩).

The construction in [5] also leads to a gap between border rank and rank

for nonnegative cyclic decompositions, which we briefly review now. Let

ε > 0 and define for every α, β ∈ {1, . . . , k} the nonnegative vectors

|vε
α,β⟩ = ε |α, β⟩+ (1 − ε)δα,β |α, β⟩

where δα,β is the Kronecker-delta, as well as

|wε
α,β⟩ = δα,β |α, β⟩+ 1

ε
(1 − δα,β) |α, β⟩ .

Setting

|τε⟩ =
k∑

αi=1

|vε
α1,α2

⟩ ⊗ |vε
α2,α3

⟩ ⊗ · · · ⊗ |vε
αn−1,αn⟩ ⊗ |wε

αn ,α1
⟩

we obtain |τε⟩ = |τ⟩+O(ε) and therefore nn-rankΘn(|τ⟩) ⩽ k. This
implies the following chain of inequalities

rankΘn(|τ⟩) ⩽ nn-rankΘn(|τ⟩) ⩽ k < rankΘn(|τ⟩) ⩽ nn-rankΘn(|τ⟩),

where the strict inequality is shown in [5, Proposition 5] and the in-

equalities between rankΘn and nn-rankΘn hold because the latter is a

constrained version of the former.

Lemma 2.3.1 cannot be employed to prove a gap for the psd-rankΘn
. The

existence of an example for the ti cyclic psd decomposition, motivates us

to conjecture that:

Conjecture 4.1.9

There is a nonnegative tensor |T⟩ such that

psd-rankΘn(|T⟩) < psd-rankΘn
(|T⟩).

4.1.4 Multipartite positive semidefinite matrices

The three types of positive decompositions for nonnegative tensors are

related to the three positive decompositions for multipartite psd matrices

(see Proposition 2.3.2). This enables us to translate gaps between border

ranks and ranks for positive tensor decompositions to gaps between

border rank and rank for multipartite psd matrices. Given a tensor |T⟩
such that psd-rankΣn(|T⟩) < psd-rankΣn

(|T⟩), the diagonal matrix ρ|T⟩
(Equation (2.11)) satisfies

puri-rankΣn(ρ|T⟩) ⩽ psd-rankΣn(|T⟩)
< psd-rankΣn

(|T⟩)
= puri-rankΣn

(ρ|T⟩),

and thereby exhibits a gap between border rank and rank for puri-rankΣn
.

Analogously one obtains gaps formatrix tensor decompositionswhenever
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there is a gap in the corresponding tensor decomposition. This strat-

egy results in gaps between border rank and rank for puri-rank(Σn ,Sn)
,

puri-rank(Θn ,Cn)
, sep-rankΘn

, and sep-rank(Θn ,Cn)
.

4.2 Absence of gaps

In the following, we provide the two remaining cases where no gaps

between border rank and rank appear. First, we establish that for standard

tensor decompositions (i.e. only containing one summation index), the

nn-rankΣn , nn-rank(Σn ,Sn), sep-rankΣn
, and the sep-rank(Σn ,Sn)

do not

exhibit a gap. Second, we prove that Ω-decompositions arising from a

tree Ω do not exhibit gaps between rank and border rank regardless of

the local positivity constraints.

The proof strategy is similar in all cases. When considering a sequence of

tensors |Tk⟩ converging to a tensor |T⟩ and their decompositions

|Tk⟩ =
r∑

α=1

|vα,k⟩ ⊗ · · · ⊗ |vα,k⟩ ,

the local vectors |vα,k⟩ do usually not converge when k → ∞;
7
however,7: This is for example the case for all

examples exhibiting a gap. There, the

local vectors diverge when approaching

the limit.

we show that in the specific cases below, every decomposition can be

reduced to a normalized version
8
. Thenwe apply the Bolzano–Weierstraß

8: This means that every local element

satisfies a normalization constraint

Theorem to the local elements to guarantee that every sequence of

decompositions obtained from a converging sequence of global elements

converges to a decomposition of the same rank.

Let us now state the version of the Bolzano–Weierstraß Theorem for finite

dimensional normed vector spaces.

Theorem 4.2.1 (Bolzano–Weierstraß)

Let S ⊆ V be a compact set

A set S in a finite dimensional normed

vector space is compact if it is

▶ closed, i.e. every converging se-

quence (sn)n∈N with sequence

elements sn ∈ S has its limit in

S , and
▶ bounded, i.e. there is a C ∈ R

such that ∥s∥ ⩽ C for all s ∈ S .

in a finite dimensional normed vector

space. Then every sequence (si)i∈N ∈ SN
has a convergent subse-

quence, i.e. there is a strictly increasing sequence (kℓ)ℓ∈N in N such

that

lim
ℓ→∞

skℓ = s ∈ S .

Note that the choice of the vector space norm in Theorem 4.2.1 does

not matter, as all norms that define a finite dimensional vector space

are equivalent
9
. For this reason, we will equip the multipartite tensor9: More specifically, if ∥ − ∥1, ∥ − ∥2 are

two norms on V , there exist constants

c1, c2 > 0 such that

c1∥v∥1 ⩽ ∥v∥2 ⩽ c2∥v∥1.

for every v ∈ V .

product space with the most convenient norm to prove the statements.

4.2.1 Standard tensor decomposition

Let us now show that nn-rankΣn , nn-rank(Σn ,Sn), sep-rankΣn
, and the

sep-rank(Σn ,Sn)
do not exhibit a gap between rank and border rank.

Theorem 4.2.2

Let (ρk)k∈N be a sequence of n-partite separable matrices with limit
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ρk → ρ and sep-rankΣn
(ρk) ⩽ r for every k. Then,

sep-rankΣn
(ρ) ⩽ r

The same statement holds for sep-rank(Σn ,Sn)
. It also holds for

sequences of nonnegative tensors together with nn-rankΣn , and

nn-rank(Σn ,Sn).

Since the nonnegative decomposition corresponds to the separable de-

composition of a diagonal matrix, it suffices to prove the statement for

separable decompositions. This generalizes the result in [102], by which

the multipartite nonnegative standard tensor decomposition does not

exhibit a gap between rank and border rank.

To prove Theorem 4.2.2 we need the following preparatory lemma.

Lemma 4.2.3

Let A, B ∈ Psdd(C). Then,

max
{

λmax(A), λmax(B)
}
⩽ λmax(A + B)

Proof. Let

RX(x) :=
⟨x| X |x⟩
⟨x | x⟩

for |x⟩ ∈ Cd
. We have that RA(x) +RB(x) = RA+B(x) and since A, B

are psd, we have that RA(x),RB(x) ⩾ 0 for every x. This implies that

max
{
RA(x),RB(x)

}
⩽ RA+B(x).

Since

λmax(X) = max
|x⟩∈Cd

RX(x),

the result follows.

Proof of Theorem 4.2.2. We prove it for sep-rank(Σn ,Sn)
. The proof for

sep-rankΣn
is analogous, and the proof for nn-rankΣn and nn-rank(Σn ,Sn)

follows from restricting to diagonal matrices and the fact that
10

10: we refer to Proposition 2.3.2 for this

correspondence.

nn-rankΣn(|T⟩) = sep-rankΣn
(ρ|T⟩).

Let (ρk)k∈N be a sequence of separable matrices with

sep-rank(Σn ,Sn)
(ρk) ⩽ r,

i.e. with a separable decomposition

ρk =
r∑

α=1

ρα,k ⊗ · · · ⊗ ρα,k

with ρα,k psd. Since all elementary tensors are themselves psd, we have

that for all α and all k

∥ρα,k∥n
∞ = ∥ρ⊗n

α,k ∥∞ ⩽ ∥ρk∥∞ ⩽ ∥ρ∥∞ + C



56 4 Border ranks of positive tensor decompositions

for some constant C ∈ N, where the first equality is true since

λmax(ρ
⊗n) = λmax(ρ)

n,

the first inequality follows by Lemma 4.2.3, and the last inequality follows

from the convergence of ρk to ρ.

This implies that (ρα,k)k∈N is a bounded sequence. ByBolzano–Weierstraß

(Theorem 4.2.1) there is a subsequence (kℓ)ℓ∈N such that ρα,kℓ converges

to a limiting point ρα, which is again psd. Since ρk → ρ by assumption,

we have that

ρ =
r∑

α=1

ρα ⊗ · · · ⊗ ρα,

i.e. sep-rank(Σn ,Sn)
(ρ) ⩽ r, which proves the statement.

4.2.2 Tree tensor networks

Tensor networks without local positivity exhibit border rank phenomena

if and only if they contain loops in the hypergraph Ω that specifies the

decomposition structure [5]. In particular, if a hypergraph Ω is a tree, the

corresponding unconstrained tensor network decomposition exhibits no

gap between rank and border rank. In the followingwewill prove that the

same is the case for positive tensor networks. We show the following:

If Ω is a tree
11
, then all positive Ω-ranks do not exhibit a gap between11: i.e. it corresponds to a graph with

|F| = 2 for every facet F ∈ F and con-

tains no loops of facets, i.e. there is no

choice of distinct vertices i1, . . . , ik ∈ [n]
such that

{i1, i2}, . . . , {ik−1, ik}, {ik , i1} ∈ F .

border rank and rank.

The proof idea is similar to the proof of Theorem 4.2.2. So we first show

that every tensor decomposition can be transformed to a normalized

version without increasing the rank. Second, we show that applying the

limit with respect to the elementary tensors yields a tensor decomposition

of the limit element.

The unconstrained decomposition

In this part, we review the result that unconstrained Ω-decompositions

on trees Ω do not exhibit a gap between border-rank and rank, i.e.

rankΩ(|T⟩) = rankΩ(|T⟩).

The idea is as follows. A tensor decomposition where an index only joins

two local spaces, such as

|T⟩ =
r∑

α=1

|vα⟩ ⊗ |wα⟩

is equivalent to a matrix factorization of the corresponding matrix

T = A · B with A ∈ Matd,r(C) and B ∈ Matr,d(C), where each column

of A is given by a vector |vα⟩ and each row of B is given by a vector |wα⟩.
Note that there is a “gauge freedom” in these decompositions, as for

every X ∈ Matr,r(C) invertible, Ã = A · X−1
and B̃ = X · B give rise

to a new decomposition of T of the same rank. Computing a thin (or

reduced) QR-decomposition of A [59, Chapter 5], we obtain A = Q · R
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with Q an isometry in Matd,r(C) and R ∈ Matr(C) an invertible matrix.

Hence,

Ã := Q and B̃ := R · B

give rise to a decomposition where all tensor factors in the first part

form an orthonormal basis, and the local vectors satisfy normalization

conditions with respect to the Hilbert–Schmidt norm

∥X∥2 :=
√

tr (X†X) =

√√√√√ d∑
i,j=1

|Xi,j|2,

namely ∥Ã∥2 =
√

r and

∥T∥2 = ∥ÃB̃∥2 =

√
tr
(

B̃†Q†QB̃
)
=

√
tr
(

B̃† B̃
)
= ∥B̃∥2.

Similarly, for any tree Ω there exists a normalized Ω-decomposition.

Such decompositions are known as canonical forms in the tensor network

literature
12

12: We refer to [97] for the left- and right-

canonical form on the line, and to [110]

for the canonical form on trees. See also

[89] for a detailed treatment.

Lemma 4.2.4

Let Ω be a tree and |ψ⟩ ∈
(

Cd
)⊗n

with rankΩ(|ψ⟩) ⩽ r. There

exists a decomposition
13

13: see Section 2.3.4 for the relation be-

tween the structure tensor |Ωr⟩ and Ω-

decompositions.|ψ⟩ = W [1] ⊗ · · · ⊗ W [n] |Ωr⟩

such that

∥W [i]∥2 =
√

r for i = 1, . . . , n − 1, and ∥W [n]∥2 =
√
⟨ψ |ψ⟩

Proof. Follows directly from the proof in [5, Proposition 1].

Lemma 4.2.4 entails that there is no gap between border rank and rank

for unconstrained Ω-decompositions whenever Ω is a tree.

Theorem 4.2.5

If Ω is a tree, then rankΩ = rankΩ.

Proof. Let |ψk⟩ be a sequence of states with |ψk⟩ → |ψ⟩ such that

rankΩ(|ψk⟩) ⩽ r. We show that rankΩ(|ψ⟩) ⩽ r. By Lemma 4.2.4

there exists tensor decomposition

|ψk⟩ = W [1]
k ⊗ · · · ⊗ W [n]

k |Ωr⟩

sucht that ∥W [i]
k ∥2 =

√
r for i = 1, . . . , n − 1 and ∥W [n]

k ∥2 =
√
⟨ψk |ψk⟩.

Since |ψk⟩ → |ψ⟩ there exists a constant C such that√
⟨ψk |ψk⟩ ⩽

√
⟨ψ |ψ⟩+ C

which implies that (W [i]
k )k∈N is a bounded sequence for every i ∈

[n]. By the Bolzano–Weierstraß Theorem (Theorem 4.2.1), there exists



58 4 Border ranks of positive tensor decompositions

a subsequence (W [i]
kℓ
)ℓ∈N converging to a matrix W [i]

for every i ∈
{1, . . . , n} which implies that

|ψ⟩ = W [1] ⊗ · · · ⊗ W [n] |Ωr⟩ ,

i.e. rankΩ(|ψ⟩) ⩽ r.

Note that the same results hold for unconstrained Ω-decompositions of

multipartite matrices.

The nonnegative and the separable decomposition

Theorem 4.2.6

Let Ω be a tree, |T⟩ a nonnegative tensor and ρ an n-partite separable
matrix. Then, the following holds:

(i) nn-rankΩ(|T⟩) = nn-rankΩ(|T⟩)
(ii) sep-rankΩ(ρ) = sep-rankΩ(ρ)

Similar to the proof of Theorem 4.2.2, we first prove a lemma on the

existence of normalized decompositions.

Lemma 4.2.7

Let Ω be a tree and ρ ∈ Matd(C)⊗n
be a separable matrix with

sep-rankΩ(ρ) ⩽ r. There exists a separable Ω-decomposition with

|I| ⩽ r
ρ =

∑
α∈I F̃

ρ
[1]
α|1

⊗ · · · ⊗ ρ
[n]
α|n

such that

▶ tr(ρ[i]β ) ⩽ 1 for every β ∈ I F̃i and i ∈ [n − 1]

▶
∑

β∈I F̃i

tr(ρ[n]β ) = tr(ρ).

We first give an idea of the normalization procedure when Ω is a tree

of three vertices according to Figure 4.3. In this case, the separable

decomposition of a state ρ is given by

ρ =
r∑

α,γ=1

ρ
[1]
α ⊗ ρ

[2]
γ ⊗ ρ

[3]
α,γ (4.6)

21

3

α γ

Figure 4.3: A tree with 3 vertices giving

rise to the decomposition in Equation

(4.6).

Note that none of the local matrices in the decomposition is normalized,

except the global one by tr(ρ) = 1. Replacing the first two local families

of matrices by

σ
[i]
β =

ρ
[i]
β

tr(ρ[i]β )
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for i ∈ {1, 2} and the third family by

σ
[3]
β1,β2

= tr
(

ρ
[1]
β1

)
· tr
(

ρ
[2]
β2

)
ρ
[3]
β1,β2

we again obtain a separable decomposition

ρ =
r∑

α,γ=1

σ
[1]
α ⊗ σ

[2]
γ ⊗ σ

[3]
α,γ

that satisfies the properties in the lemma, since

tr
(

σ
[1]
β

)
= tr

(
σ
[2]
β

)
= 1

for β ∈ {1, . . . , r} and

r∑
α,β=1

tr
(

σ
[3]
α,γ

)
=

r∑
α,β=1

tr
(

ρ
[1]
α

)
tr
(

ρ
[2]
β

)
tr
(

ρ
[3]
α,γ

)

=
r∑

α,β=1

tr
(

ρ
[1]
α ⊗ ρ

[2]
β ⊗ ρ

[3]
α,γ

)
= tr(ρ)

where we have used the multiplicativity of the trace with respect to the

tensor product
14
. Note that a similar normalization procedure can be 14: i.e. for two square matrices A, B, we

have that

tr(A ⊗ B) = tr(A) · tr(B).

done for every other arrangement of local spaces.

Proof of Lemma 4.2.7. We prove a stronger statement by induction over

the number of vertices n. Specifically, we show that for every family

(ρδ)δ∈I with a joint Ω-decomposition

ρδ =
∑

α∈I F̃

ρ
[1]
α|1

⊗ ρ
[2]
α|2

⊗ · · · ⊗ ρ
[n−1]
α|n−1

⊗ ρ
[n]
α|n ,δ (4.7)

the local tensors can be chosen such that tr(ρ[i]β ) = 1 for β ∈ I F̃i and

i ∈ {1, . . . , n − 1}, and ∑
β∈I F̃n

tr(ρ[n]β,δ) = tr(ρδ).

Setting δ = 1 proves the claim. The idea of the induction step is shown

in Figure 4.4.

For n = 1 (i.e. a single vertex) the statement is trivial.

For the induction step n − 1 → n, choose a joint Ω-decomposition

according toEquation (4.7)without normalization constraints.We assume

without loss of generality that vertex n is connected to precisely two other

vertices.
15
Wedenote the vertices of thefirst subtreeΩ1 by {1, . . . , k1}, and 15: If it is connected to more or less ver-

tices the proof works analogously.
the vertices on the second subtree Ω2 by {k1 + 1, . . . , n − 1}. Moreover,

vertices k1 and n − 1 are connected to vertex n (Figure 4.4). For this

reason, we can rewrite the separable Ω-decomposition ρδ as

ρδ =
∑

γ,η∈I
ρ
[1,...,k1]
γ ⊗ ρ

[k1+1,...,n−1]
η ⊗ ρ

[n]
γ,η,δ
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Figure 4.4: Sketch of the induction step

in the proof of Lemma 4.2.7. We assume

that a normalized decomposition on ev-

ery subtree Ω1, Ω2 exists. This implies

that all local elements at the small nodes

have trace 1. Large nodes represent local
elements whose normalization is given

by the global element. In the induction

step, we shift the global normalization

constraint of node k1 and n − 1 to node

n.

γ η

δ

k1 n − 1

n

Ω1

Ω2
Induction

step

γ η

δ

with

ρ
[1,...,k1]
γ =

∑
α∈I G̃

ρ
[1]
α|1

⊗ · · · ⊗ ρ
[k1]
α|k1

,γ

and

ρ
[k1+1,...,n−1]
η =

∑
α∈IH̃

ρ
[k1+1]
α|k1+1

⊗ · · · ⊗ ρ
[n−1]
α|n−1

,η

where G̃ and H̃ are the sets of facets of Ω1 and Ω2 respectively. Applying

the induction hypothesis to ρ
[1,...,k1]
γ and ρ

[k1+1,...,n−1]
η , we obtain that all

tensor factors have trace one, except the tensor factors at position k1 and

n − 1. There, we have ∑
β∈I F̃k1

tr(ρ[k1]
β,γ ) = tr(ρ[1,...,k1]

γ )

and ∑
β′∈I F̃n−1

tr(ρ[n−1]
β′ ,η ) = tr(ρ[k1+1,...,n−1]

η ).

Defining

ρ̃
[k1]
β,γ :=

1

tr(ρ[1,...,k1]
γ )

ρ
[k1]
β,γ ,

ρ̃
[n−1]
β′ ,η :=

1

tr(ρ[k1+1,...,n−1]
η )

ρ
[n−1]
β,η ,

and

ρ̃
[n]
γ,η,δ := tr(ρ[1...k1]

γ ) · tr(ρ[k1+1...n−1]
η ) · ρ

[n]
γ,η,δ

we obtain a joint Ω-decomposition

ρδ =
∑

α∈I F̃

ρ
[1]
α|1

⊗ · · · ⊗ ρ̃
[k1]
α|k1

⊗ ρ
[k1+1]
α|k1+1

⊗ · · · ⊗ ρ̃
[n−1]
α|n−1

⊗ ρ̃
[n]
α|n ,δ

that satisfies the desired properties. Since every tree arises by sequentially

attaching vertices in the described way, this proves the statement.

We are now ready to prove the absence of gaps for separable and

nonnegative tree tensor decompositions.

Proof of Theorem 4.2.6. The proof is analogous to Theorem 4.2.2.We prove

it again only for separable decompositions; the statement for nonnegative

decompositions follows by considering separable decompositions of

diagonal matrices. Let (ρk)k∈N be a sequence of separable matrices such



4.2 Absence of gaps 61

that sep-rankΩ(ρk) ⩽ r and ρk → ρ. We show that sep-rankΩ(ρ) ⩽ r.
To this end, let

ρk =
∑

α∈I F̃

ρ
[1]
α|1 ,k ⊗ · · · ⊗ ρ

[n]
α|n ,k

be a normalized decomposition according to Lemma 4.2.7. We have that

tr(ρ[i]β,k) = 1 for every i ∈ {1, . . . , n − 1} and tr(ρ[n]β,k) ⩽ tr(ρ) + C for

a suitable choice of C due to the convergence ρk → ρ. Hence, every

tensor factor is a bounded sequence which has a convergent subsequence

ρ
[i]
β,kℓ

→ ρ
[i]
β for ℓ → ∞ due to Theorem 4.2.1. Since ρk → ρ, we have that

ρ =
∑

α∈I F̃

ρ
[1]
α|1

⊗ · · · ⊗ ρ
[n]
α|n

which shows that sep-rankΩ(ρ) ⩽ r.

The psd decomposition and the local purification form

We now prove that for every tree Ω, neither psd Ω-decompositions nor

Ω-purifications exhibit a gap between rank and border rank. The proof

strategy is similar to other cases without gaps: We use that there is a

bounded decomposition with the same expressiveness and then apply

the Bolzano–Weierstraß Theorem. In this case, we additionally use the

correspondence to correlation scenarios (Theorem 3.2.1) and the absence

of gaps for unconstrained decompositions (Theorem 4.2.5).

Theorem 4.2.8

Let Ω be a tree, |T⟩ a nonnegative tensor and ρ a psd matrix. Then,

(i) psd-rankΩ(|T⟩) = psd-rankΩ(|T⟩)
(ii) puri-rankΩ(ρ) = puri-rankΩ(ρ)

To prove the theorem, we need the following preparatory lemma:

Lemma 4.2.9

For every sequence of quantum channels(
Ek : Matd1(C) → Matd1(C)

)
k∈N

,

there exists a convergent subsequence.

Proof. Let Lin(d1, d2) be the set of all linear maps

L : Matd1(C) → Matd2(C).

We prove that the set

CPTP(d1, d2) :=
{
E ∈ Lin(d1, d2) : E is cptp

}
is compact inLin(d1, d2). The statement follows thenbyBolzano–Weierstraß

(Theorem 4.2.1).
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Equipping the space Lin(d1, d2) with the norm

∥E∥ := max
∥ρ∥1⩽1

∥E(ρ)∥1

where ∥ · ∥1 is the trace-norm on Matdi
(C), we obtain that ∥E∥ ⩽ 1 for

every E ∈ CPTP(d1, d2), which shows the boundedness.

Moreover, CPTP(d1, d2) is closed since it can be characterized by the

closed conditions idn ⊗ E(A) ⩾ 0 for every psd A ∈ Matd1·n(C) and
tr(E(ρ)) = tr(ρ) for every ρ ∈ Matd1(C). Since intersections of closed
sets are closed, we obtain compactness of CPTP(d1, d2).

Proof of Theorem 4.2.8. We prove the statement only for puri-rankΩ as

the case of psd-rankΩ works similarly. Let (ρk)k∈N be a sequence of psd

matrices such that puri-rankΩ(ρk) ⩽ r and ρk → ρ. We need to prove

that puri-rankΩ(ρ) ⩽ r.

ByTheorem3.2.1 there exists a sequenceof states |ψk⟩with rankΩ(|ψk⟩) ⩽
r and a sequence of quantum channels E (k)

i for every i ∈ [n] such that

ρk =
(
E (k)

1 ⊗ · · · ⊗ E (k)
n

) (
|ψk⟩ ⟨ψk|

)
.

Since the space of quantum states is compact (we have that ⟨ψ |ψ⟩ = 1
for every |ψ⟩), and by Lemma 4.2.9, there exists a joint subsequence kℓ
such that

Ei := lim
ℓ→∞

E (kℓ)
i and |ψ⟩ := lim

ℓ→∞
|ψkℓ⟩ ,

which implies that

ρ = (E1 ⊗ · · · ⊗ En)(|ψ⟩ ⟨ψ|).

Since rankΩ = rankΩ (see Theorem 4.2.5), we have that rankΩ(|ψ⟩) ⩽ r,
which proves that puri-rankΩ(ρ) ⩽ r.

The proof for the psd-rank similarly uses Theorem 3.1.2 and the fact that

every sequence of a POVM has a convergent subsequence that converges

to a POVM by the Bolzano–Weierstraß Theorem.

4.3 Applications

Let us now present three implications of the existence and absence of

gaps between ranks and border ranks:

▶ In Section 4.3.1 we show that the existence of gaps leads to instabil-

ities for optimization problems over tensor network manifolds.

▶ In Section 4.3.2 we prove a correspondence between postive tensor

decompositions and quantum correlation sets. The gaps between

border ranks and ranks then imply that certain sets of quantum

correlations are not closed.

▶ In Section 4.3.3 we prove that gaps also lead to new types of

separations between positive tensor ranks.
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4.3.1 Instability in optimization

Tensors are in general very costly to represent. For this reason, one often

restricts to approximate representations with a restriction on the rank of

the approximation. In this context, one wants to find for a given n-partite

tensor |T⟩ ∈
(

Cd
)⊗n

the best rank r approximation of |T⟩, i.e.

minimize ∥ |T⟩ − |W⟩ ∥
subject to rank(|W⟩) ⩽ r.

(4.8)

For the case of bipartite tensors (i.e. matrices), this minimization prob-

lem has an analytic solution by the Eckart–Young–Mirsky theorem.
16

16: This result goes back to Eckart and

Young [45] for the Frobenius norm, and

to Mirsky [85] for arbitrary unitarily in-

variant norms.

Specifically, if ∥ · ∥ is an unitarily invariant norm
17
, then for every matrix

17: A norm ∥ · ∥ is called unitarily invari-
ant if

∥UA∥ = ∥A∥
for every matrix A and unitary matrix U.

Examples of unitarily invariant norms

are the Frobenius norm, the spectral

norm, or more generally every Schatten

p-norm with parameter p ⩾ 1.

A ∈ Matd(C) with singluar value decomposition

A =
d∑

k=1

σk |uk⟩ ⟨vk|

and singular values σ1 ⩾ σ2 ⩾ . . . ⩾ σd ⩾ 0, the solution of Equation

(4.8) is given by

Ar :=
r∑

k=1

σk |uk⟩ ⟨vk|

i.e. considering the largest r singular values.

For other norms, no analytic formula is given; however, Equation (4.8)

has a solution since the set of feasible points

T := {A ∈ Matd(C) : rank(A) ⩽ r}

is topologically closed. This is equivalent to the matrix-rank being lower
semi-continuous, i.e. for every sequence Ak → A for k → ∞, we have

rank(Ak) ⩽ r =⇒ rank(A) ⩽ r. (4.9)

Also for positive matrix ranks, Equation (4.8) has a solution. This again

follows from the fact that the nonnegative and the psd matrix rank
18

are 18: See Example 2.3.5 and Example 2.3.7

for the definition of these ranks.
lower-semi continuous. For a direct proof of these results we refer to

[18] for the nonnegative matrix rank and to [49, Theorem 2.12] for the

positive semidefinite matrix rank. Note that these results are a special

case of Theorem 4.2.6, Theorem 4.2.5, and Theorem 4.2.8 considering the

tree with two vertices and one edge.

By Equation (4.9), we have shown that the multipartite tensor ranks are

lower-semicontinuous for tree structures, which implies that the best

rank r approximation problem has a solution in these cases.
19

19: Similar to the positive matrix factor-

izations, this result does not say anything

about the efficiency of computing these

approximations.

However, the gaps between border rank and rank exemplify that Equation

(4.8) does not have a solution for arbitrary tensor decompositions. For

example the problem

minimize ∥ |T⟩ − |Wn⟩ ∥
subject to rankΣn(|T⟩) ⩽ 2

(4.10)



64 4 Border ranks of positive tensor decompositions

where |Wn⟩ is the n-partite W-state does not have a solution because we

can find a rank-2 approximation of |Wn⟩ for every approximation error

ε > 0 (see Corollary 4.1.2). In other words, the set of feasible tensors

T :=
{
|T⟩ ∈

(
Cd
)⊗n

: rankΣn(|T⟩) ⩽ 2
}

is not closed for n ⩾ 3.

In summary, we have the following statement:

Observation 4.3.1

For any type of t-rank, the minimization problem of Equation (4.8)

has no solution if and only if there is a gap between border rank and

rank for this t-rank.

4.3.2 Quantum correlation scenarios

In Chapter 3 we proved a correspondence between positive tensor

decompositions and correlation scenarios. We now show that these

correspondences together with the gaps between ranks and border ranks

imply that the sets of correlations are not closed. It follows that it is

generally impossible to test membership of a probability distribution in

these sets with a finite number of measurements.

We prove non-closedness for CQCorr(Θn ,Cn)(n, d, r), for other sets, the
argument is analogous. Let (|Pk⟩)k∈N be a sequence of tensors represent-

ing a probability distribution with limk→∞ |Pk⟩ = |P⟩ and exhibiting a

gap between rank and border rank (see Proposition 4.1.6), i.e.

psd-rank(Θn ,Cn)
(|Pk⟩) ⩽ r < psd-rank(Θn ,Cn)

(|P⟩).

Then Pk ∈ CQCorr(Θn ,Cn)(n, d, r) for all k ∈ N while

P /∈ CQCorr(Θn ,Cn)(n, d, r),

i.e. CQCorr(Ω,G)(n, d, r) is not closed.

The closedness of correlation sets is essential to test membership. Cer-

tifying that a probability distribution P does not arise from a certain

correlation scenario is based on constructing a continuous witness func-

tion

f :
(

Rd
)⊗n

→ R

that satisfies the following properties:

▶ f (Q) > 0 for every Q ∈ CQCorr(Ω,G)(n, d, r)
▶ f (P) < 0

Guessing P from finitely many samples results in an approximation P̃
that is close to P with high probability. Therefore, if the guess P̃ satisfies

f (P̃) < 0, we can infer that P does not arise from the correlation scenarios

with high probability. This follows from the fact that if f (P) < 0, then
also f (P̃) < 0, if P̃ is in some neighborhood of P (see Figure 4.5).

C

f (Q) = 0
f (Q) > 0 f (Q) < 0

P

Figure 4.5: A witness function f for a

given probability distribution P outside

of a subset C . f separates P from C . Since
f (P) < 0 and f is continuous, it remains

negative for a small neighborhood of P.
This is only possible if C is closed.

But such witness functions only exist if CQCorr(Ω,G)(n, d, r) is closed.
If P /∈ CQCorr(Ω,G)(n, d, r) lies on the boundary, a potential witness
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function must ‘jump’ in P which contradicts its continuity. Thus it

is impossible to witness P /∈ CQCorr(Ω,G)(n, d, r) from finitely many

samples of the probability distribution.

According to the gaps between ranks and border ranks (see Figure 4.2)

the same behavior appears in the following cases:

▶ Testing the rankΣn for n ⩾ 5.
▶ Symmetrically testing rank(Σn ,Sn) for n ⩾ 3.
▶ Symmetrically testing rank(Θn ,Cn) for n ⩾ 17.

Analogously, one can show that QQCorr(Ω,G)(n, d, r) is not closed in the

above situations.

In contrast, the set of classical correlations CCorr(n, d, r) is closed for

every choice of n, d, r ∈ N. This follows from the fact that nn-rankΣn

does not exhibit a gap between border rank and rank, and hence for

every converging sequence of nonnegative tensors |Pk⟩ → |P⟩ with

nn-rankΣn(Pk) ⩽ r we also have nn-rankΣn(|P⟩) ⩽ r. For every P /∈
CCorr(n, d, r) there exists a separating witness since the distance between

CCorr(n, d, r) and P is strictly positive. Moreover, the sets of quantum

correlations CQCorrΩ(n, d, r) and QQCorrΩ(n, d, r) are closed if Ω is a

tree.

4.3.3 Separations for approximate tensor decompositions

Various notions of positive tensor decompositions exhibit separations

[49, 68], meaning that there exist families of bipartite tensors (|Td⟩)d∈N

where |Td⟩ ∈ Cd ⊗ Cd
such that

rank(|Td⟩) = const. and psd-rank(|Td⟩) → ∞

as d → ∞. Moreover, there is also a family of bipartite tensors (|Sd⟩)d∈N

such that

psd-rank(|Sd⟩) = const. and nn-rank(|Sd⟩) → ∞.

Are these separations robust with respect to approximations? In [38]

it is proven that for fixed approximation error ε > 0 and a fixed norm,

the separations between rankΩ, psd-rankΩ and nn-rankΩ disappear.

More precisely, rankε(T), psd-rankε(T), nn-rankε(T) (see Equation (4.1))
can be upper bounded by a function depending only on ε and ∥T∥,
independent of the dimension of the tensor product space. However,

if the choice of ε > 0 and vector space dimension is too small, this

upper bound exceeds trivial dimension-dependent upper bounds. So the

bounds are only meaningful when the dimension of the tensor product

space is large.

We will now prove a “dual” statement. If the dimension of the tensor

product space is fixed, there exists an error ε > 0 such that the separation

between rank and nn-rank persists.
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Theorem 4.3.2

There exists a family of nonnegative tensors (|Tn⟩)n∈N with

|Tn⟩ ∈
(

Cd
)⊗n

and a family of approximation errors εn > 0 such that

nn-rankεn(|Tn⟩) = n.

We have also that

rankε
Σn(|Tn⟩) = psd-rankε

Σn
(|Tn⟩) = 2

for every ε > 0 independent of n.

Proof. Let |Tn⟩ := |Wn⟩ the family of n-partite W-states. For fixed n ∈ N,

we know that

nn-rankΣn(|Wn⟩) = nn-rankΣn(|Wn⟩) = n.

Therefore there exists a εn > 0 such that

nn-rankεn
Σn
(|Wn⟩) = n.

For the second statement, recall that

rankΣn(|Wn⟩) = psd-rankΣn(|Wn⟩) = 2.

Since

rankε
Σn(|Wn⟩) ⩽ rankΣn(|Wn⟩) = 2

and

psd-rankε
Σn
(|Wn⟩) ⩽ psd-rankΣn(|Wn⟩) = 2

for every ε > 0, this proves the statement.

4.4 Conclusions and outlook

In this chapter, we have shown that many gaps between ranks and border

ranks persist when introducing positivity and invariance constraints for

tensor decompositions, and explored its consequences. More precisely,

we have proven that:

▶ The standard and symmetric tensor decompositions exhibit gaps

between border rank and rank for the psd-decomposition and local

purifications (Subsection 4.1.1), and the gaps disappear for the

nonnegative and separable decomposition (Theorem 4.2.2);

▶ Most of the gaps persist for cyclic and translational invariant

decompositions (Subsection 4.1.3 and Subsection 4.1.2);

▶ There are no gaps for tree tensor decompositions, regardless of

positivity constraints (Theorem 4.2.6);

Many of the examples exhibiting a separation are n-partite tensor de-

compositions with n > 3. This leaves open the question whether gaps



4.4 Conclusions and outlook 67

between border ranks and ranks exist for positive and invariant 3-partite
decompositions.

Other surprising properties of tensor decompositions appearing already

at n = 3 include the fact that tensor rank and border rank are non-

additive with respect to the direct sum [109, 111, 27], and that they are

also non-multiplicative with respect to tensor products [28, 26]. Do these

properties also hold for positive and invariant decompositions? And

what are their implications for correlation scenarios?
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In Chapter 2, we introduced two classes of objects: nonnegative tensors This chapter is based on Section 1, 3, 4,

and 7 in [39].
and multipartite psd matrices. These two classes encompass the two

central structures studied in this part, namely a tensor product structure

and a notion of global positivity.
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5.1.1 Setting the stage . . . . . . . . 71

5.1.2 The invariant decomposition 73

5.1.3 The invariant separable

decomposition . . . . . . . . . 83

5.1.4 The invariant sum-of-squares

decomposition . . . . . . . . . 86

5.2 Inequalities and separations

between the ranks . . . . . 92

5.2.1 Inequalities between ranks . . 92

5.2.2 An upper bound for the

separable rank . . . . . . . . . 95

5.2.3 Separations . . . . . . . . . . . 96

5.3 Conclusions and outlook . 100

In this chapter, we introduce yet another vector space structure encom-

passing these two elements: real multivariate polynomials. These are objects
in the tensor product space of polynomials in each of their variables,

P := R[x[1], x[2], . . . , x[n]] ∼= R[x[1]]⊗ R[x[2]]⊗ · · · ⊗ R[x[n]],

where ⊗ denotes the algebraic tensor product and x[i] a collection of

variables x[i]1 , . . . x[i]mi . In other words, every polynomial p ∈ P can be

expressed as a finite sum of “elementary constituents”

p[1](x[1]) · p[2](x[2]) · · · p[n](x[n]),

where every p[i] is itself a polynomial that only depends on the variables

x[i]. We consider two questions:

▶ If p is symmetric under the exchange of, say, systems i and j, can
this symmetry be reflected in the decomposition?

▶ If p is positive (for some notion of positivity), can this positivity be

reflected in the decomposition?

Our framework addresses these two questions as follows, when applied

to polynomials:

(a) The summation structure is described by a weighted simplicial

complex Ω, so that every system i is associated to a vertex of Ω,

and every summation index to a facet of Ω.

(b) By definition, an (Ω, G)-decomposition of a polynomial contains a

certificate of invariance under the group G. We characterize which

G-invariant polynomials admit an (Ω, G)-decomposition.

(c) By definition, a separable or sum-of-squares (sum-of-squares (sos))

(Ω, G)-decomposition contains a certificate of invariance and of

membership in the separable or sos cone, respectively.We character-

ize which separable or sos polynomials admit such decompositions.

Our framework models symmetries as follows: we have a group G acting

on the set {1, . . . , n}, and the induced action on the polynomial space P
is obtained by permuting system [i] to [gi],

g : x[i] 7→ gx[i] := x[gi]. (5.1)

A polynomial is G-invariant if it is invariant with respect to all such

permutations g ∈ G, and we want to make this invariance explicit in the

decomposition of p. For example, the decomposition

p =
r∑

α1,...,αn=1

pα1,α2(x
[1]) · pα2,α3(x

[2]) · · · pαn ,α1(x
[n]) (5.2)
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makes explicit that p is invariant under the cyclic group, x[i] 7→ x[i+1]
.Note that there are no superscripts [i] in

the polynomials in the invariant decom-

positions.

And

p =
r∑

α=1

pα(x[1]) · pα(x[2]) · · · pα(x[n]) (5.3)

makes explicit that p is invariant under the full symmetry group.

Finally, if p is in a cone
1
, we want a certificate of this fact (cf. (c)). In1: Examples of cones are the sum-of-

squares (sos) polynomials, the cone of

nonnegative polynomials, or the cone

of polynomials with nonnegative coeffi-

cients.

quantum physics, a mixed quantum state is represented by a psd matrix

and the certificate is called a purification. In probabilistic modelling, the

certificate of a probability distribution is a nonnegative decomposition. In

real algebraic geometry, the natural certificate of positivity of a polynomial

is being sum of squares. In all of these cases, witnessing the positivity of

a global element is a central problem with many ramifications.

Note that decompositions of tensors and polynomials have been studied

from different perspectives. Also symmetries and positivity have been

considered together, but the arising decompositions are by far not as

clean as the corresponding separate decompositions. To give a short

overview, and also motivate our combined approach, let us explain some

of the existing decompositions, and point out why they are not directly

related to our approach.

▶ TheWaring decomposition is a decomposition of polynomials, also

inspired by tensors. Let p ∈ R[x1, . . . , xn] of degree d. The Waring
rank of p is defined as the minimum r ∈ N such that

p =
r∑

α=1

cαℓα(x1, . . . , xn)
d

where ℓα(x1, . . . , xn) = aα,1x1 + . . . + aα,nxn is a linear form. The

Waring rank is equivalent to the symmetric tensor rank via the

correspondence

p =
d∑

j1,...,jn=1

⟨j1, . . . , jn | T⟩ xj1 · · · xjn

between symmetric tensors in T ∈
(

Cd
)⊗n

and homogeneous

polynomials of degree n. Yet, the Waring decomposition cannot

exhibit any additional symmetry of the polynomial, since the

corresponding tensor is already fully symmetric for any polynomial.

For generalizations of the Waring problem to polynomials instead

of linear forms, we refer to [52]. Another related decomposition is

the completely decomposable decomposition [1].

▶ For symmetric polynomials, the decomposition into power-sum

polynomials is an example of an explicitly invariant decomposition.

Every symmetric polynomial p can be written as p = q(p1, . . . , pn),
where

pα =
n∑

i=1

xα
i .

In other words, the ring of symmetric polynomials with real coeffi-

cients corresponds to the ring R[p1, . . . , pn] generated by power-

sum polynomials. The same statement is true by replacing the set

of power-sum polynomials by elementary symmetric polynomials.
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▶ Also, the combination of symmetry and positivity is well-studied. It

is, for example, known that symmetric sum-of-squares polynomials

do, in general, not decompose into a sum of symmetric squares, to

fully characterize the set of symmetric sum-of-squares polynomials,

one has to introduce a more general notion of symmetric sum-of-

square decomposition [43].

In this chapter, we do the following:

▶ We define invariant decompositions of polynomials (Definition

5.1.1). We show that every invariant polynomial admits an invariant

decomposition if the group action is free on the weighted simplicial

complex (Theorem 5.1.2). In addition, every invariant polynomial

can be written as the difference of two invariant decompositions if

the group action is blending (Theorem 5.1.7).

▶ We define the invariant separable decomposition (Definition 5.1.2),

and the invariant sos decomposition (Definition 5.1.3), and show

that every invariant separable/sos polynomial admits an invariant

separable/sos decomposition if the group action is free (Theorem

5.1.8 and Corollary 5.1.12, respectively). These decompositions

combine positivity and symmetry in a clean way.

▶ We provide inequalities and separations between the ranks of three

invariant decompositions (Proposition 5.2.2 and Corollary 5.2.6,

respectively).

5.1 Invariant polynomial decompositions

In this section we define invariant polynomial decompositions and

their ranks. To this end we first set the stage (Section 5.1.1), define and

study the invariant decomposition (Section 5.1.2), the invariant separable

decomposition (Section 5.1.3), and finally the invariant sum-of-squares

decomposition (Section 5.1.4).

5.1.1 Setting the stage

Throughout this section we consider polynomials in the space

P := R[x[1], x[2], . . . , x[n]] ∼= R[x[1]]⊗ R[x[2]]⊗ · · · ⊗ R[x[n]]

where R[x[i]] := R[x[i]1 , . . . , x[i]mi ] is the space of real polynomials in mi
variables, and⊗ denotes the algebraic tensor product. These polynomials

use collections of local variables, denoted x[i], for each local site i =
1, . . . , n. The case where all mi = 1 is already very interesting, as it

describes how the multivariate polynomial ring is decomposed into a

tensor product of univariate polynomial rings.

In particular,

R[x[1], . . . , x[n]] ∼= R[x[1]]⊗ R[x[2]]⊗ · · · ⊗ R[x[n]],
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where x[i] is a single variable, means that every multivariate polynomial

can be expressed as a sum of products of univariate polynomials, i.e.

p =
r∑

α=1

p[1]α (x[1]) · · · p[n]α (x[n]).

We define the local degree of p ∈ P , denoted degloc(p), as the smallest

positive integer d ∈ N such that

p ∈ Pd := R[x[1]]d ⊗ R[x[2]]d ⊗ · · · ⊗ R[x[n]]d

where R[x]d is the space of real polynomials in x of degree at most

d. A polynomial with degloc(p) ⩽ d contains monomials consisting of

variables in x[i] with degree at most d, for each i. Note that the local

degree can be related to the (global) degree of the polynomial by

degloc(p) ⩽ deg(p) ⩽ n · degloc(p).

A group action G on [n] induces a group action on the space P , defined

for g ∈ G and p ∈ P by

(gp)(x[1], . . . , x[n]) := p(x[g1], . . . , x[gn]). (5.4)

Note that this definition only makes sense if the local polynomial spaces

R[x[i]] and R[x[j]] are isomorphic whenever i, j ∈ [n] are in the same

orbit of G (i.e. gi = j for some g ∈ G), i.e. the number of local variables

needs to coincide for i, j, namely mi = mj. The canonical isomorphism

between elements in R[x[i]] and R[x[j]] is given by replacing the variables

x[i] with x[j] in every polynomial and vice versa. We will frequently use

this isomorphism in an implicit way, as for a polynomial p[i] ∈ R[x[i]]
we will denote its corresponding element in R[x[j]] as p[i](x[j]).

We say that p ∈ P is G-invariant if for each g ∈ G we have gp = p, or
equivalently

p(x[g1], . . . , x[gn]) = p(x[1], . . . , x[n]) for every g ∈ G.

For example, if mi = 1 and G is the full permutation group on [n], then
a polynomial p is invariant if

p(x[1], . . . , x[n]) = p(x[σ(1)], . . . , x[σ(n)])

for every permutation σ : [n] → [n], which means that p is invariant

with respect to arbitrary permutations of variables.

Similar to the tensor decompositions in Chapter 2, we consider I to be

a finite index set, and write a map α : F̃ → I as a tuple α ∈ I F̃
with

entries from I indexed by the facets in F̃ . If we have a function α : F̃ → I
and want to restrict its domain to F̃i (for some index i ∈ [n]), in the tuple

notation we again write

α|i := α|F̃i
∈ I F̃i ,

which means that we delete all entries which are indexed by a facet not
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containing i. We will in general stick to the functional notation except

for the examples, where we will switch to the tuple notation. Their

connection will be made explicit in the examples.

5.1.2 The invariant decomposition

We now define the basic invariant decomposition similar to Defini-

tion 2.3.1, called (Ω, G)-decomposition. Afterwards we will study the

existence of decompositions without invariance, the existence of invari-

ant decompositions with free group actions and with blending group

actions.

The idea of the invariant decomposition is to consider finite sums of

elementary polynomials (i.e. polynomials written as a product of local

polynomials depending on one collection of variables x[i]), where each

local polynomial is associated to a vertex of Ω, and the summation indices

are described as functions α|i on the facets. The following definition is

illustrated in Example 5.1.1, Example 5.1.2, Example 5.1.3, Example 5.1.4,

and Example 5.1.5.

Definition 5.1.1 ((Ω, G)-decomposition of polynomials)

Let p ∈ P . An (Ω, G)-decomposition of p consists of a finite index set

I and families of polynomials

P [i] :=
(

p[i]β

)
β∈I F̃i

where p[i]β ∈ R
[
x[i]
]
for all i ∈ [n], such that

(a) p can be written as

p =
∑

α∈I F̃

p[1]α|1
(x[1]) · · · p[n]α|n

(x[n])

(b) For all i ∈ [n], g ∈ G and β ∈ I F̃i we have

p[i]β (x[i]) = p[gi]
g β (x[i])

where
gβ is defined in Equation (2.4).

The minimal cardinality of I among all (Ω, G)-decomposition of p
is the (Ω, G)-rank of p, denoted rank(Ω,G)(p). If p does not admit an

(Ω, G)-decomposition, we set rank(Ω,G)(p) = ∞.

Also, if G is the trivial group action, we call the (Ω, G)-decomposition

just Ω-decomposition and denote its rank by rankΩ .

Condition (a) provides an arrangement of the summation indices encoded

in the functions α, and Condition (b) ensures that the decomposition

has the desired symmetry by requiring that the coefficients of local

polynomials in different local spaces coincide. Note again that this

equality only makes sense if the collections x[i] and x[gi]
have the same

cardinality (i.e. mi = mgi).
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If a polynomial has a (Ω, G)-decomposition then it is G-invariant since

gp = p(x[g1], . . . , x[gn]) =
∑

α∈I F̃

p[1]α|1
(x[g1]) · · · p[n]α|n

(x[gn])

=
∑

α∈I F̃

p[g1]
g(α|1 )

(x[g1]) · · · p[gn]
g(α|n )

(x[gn])

=
∑

α∈I F̃

p[g1]
(gα)|g1

(x[g1]) · · · p[gn]
(gα)|gn

(x[gn])

=
∑

α∈I F̃

p[1]α|1
(x[1]) · · · p[n]α|n

(x[n]) = p,

where we have used Definition 5.1.1 (b) in the third equality, and the fact

that α 7→ g α is a bĳection on I F̃
and that i 7→ gi is a bĳection on [n] in

the fifth equality.

In the converse direction, the following holds: If a polynomial is G-

invariant, then it has an (Ω, G)-decomposition if G acts freely on Ω (see

Theorem 5.1.2).

The existence of an (Ω, G)-decomposition might imply an even stronger

symmetry than G-invariance. As we will see in Example 5.1.4, the ex-

istence of a (Σn, G)-decomposition for any transitive group action of

some group G already implies Sn-invariance. This is closely related to

the action not being free.

Let us now revisit our running examples — the simple and double

edge — in the light of invariant polynomial decompositions.

Example 5.1.1 (The simple edge with invariance)

On the simple edge Λ2, the elements in I F̃
are just single values, and

thus the corresponding decomposition is given by

p =
r∑

α=1

p[1]α (x[1]) · p[2]α (x[2]).

The C2-invariant decomposition is given by

p =
r∑

α=1

pα(x[1]) · pα(x[2]).

Example 5.1.2 (The double edge with invariance)

For the double edge
2

2: See Example 2.2.4 for its definition. ∆ wehave two facets and thus the ∆-decomposition

reads

p =
r∑

α,β=1

p[1]α,β(x
[1]) · p[2]β,α(x

[2]).

Note that the order of the indiced α, β does not matter here, since there

is no connection between the local polynomials at site 1 and 2.We refer to Example 2.3.4 for the analo-

gous example concerning tensors.

But for
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the non-trival C2 action, Definition 5.1.1 (b) specifies that

p[1]α,β = p[2]α,β,

so an (∆, C2)-decomposition is of the form

p =
r∑

α,β=1

pα,β(x[1]) · pβ,α(x[2]). (5.5)

Let us now consider an invariant polynomial on the double edge which

we will revisit in Example 5.1.11 in the light of sum-of-squares invariant

decompositions.

Example 5.1.3 (Invariant polynomial on the double edge)

Consider the polynomial

p = x2 + y2 + 4(1 + xy)2

= 4 + 8xy + x2 + y2 + 4x2y2 ∈ R[x]⊗ R[y]

which is invariant with respect to the permutation of x and y. A (∆, C2)-
decomposition of p has the form

p =
2∑

α,β=1

pα,β(x)pβ,α(y),

with

p1,1(t) =
1
2
+ 2t2, p1,2(t) = p2,1(t) =

√
15
8

, p2,2(t) =
√

8t.

It is easy to see that a decomposition of rank 1 does not exist, showing

that the (∆, C2)-rank is indeed 2.

Let us now see more standard examples of (Ω, G)-decompositions based

off the weighted simplicial complexes presented in Section 2.2.1.

Example 5.1.4 (The simplex decomposition)

For n ⩾ 2 consider an n-simplex Σn, whose facets are given by F̃ =
{[n]}. Since F̃ only contains one facet encompassing all vertices, the

corresponding Σn-decomposition is given by

p =
r∑

α=1

p[1]α (x[1]) · p[2]α (x[2]) · · · p[n]α (x[n]).

The minimal integer r among all such decompositions is the rankΣn(p).
Now assume there is a group action G on [n] which is transitive, i.e. it

generates only one orbit, namely Gi = [n] for all i ∈ [n]. Then Definition

5.1.1 (b) requires p[i]α = p[j]α for all i, j, α, and hence the corresponding
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(Σn, G)-decomposition reads

p =
r∑

α=1

pα(x[1]) · pα(x[2]) · · · pα(x[n]).

This decomposition is manifestly fully symmetric with respect to every

permutation of x[i] with x[j]. The minimal such r is the rank(Σn ,G)(p).

Example 5.1.5 (The cyclic decomposition)

For n ⩾ 3 consider the circle Θn.
3

3: See Example 2.2.3 for its definition The Θn-decomposition of p reads

p =
r∑

α1,...,αn=1

p[1]α1,α2(x
[1]) · p[2]α2,α3(x

[2]) · · · p[n]αn ,α1(x
[n]).

The minimal such r is the rankΘn(p).
Since the cyclic group Cn acts freely on Θn, we obtain the (Θn, Cn)-
decomposition

p =
r∑

α1,...,αn=1

pα1,α2(x
[1]) · pα2,α3(x

[2]) · · · pαn ,α1(x
[n]).

This decomposition is manifestly ti, that is, invariant with respect to

permutations x[i] 7→ x[a+i]
for a ∈ N where addition is modulo n + 1.

Note that polynomials with such a decomposition are generally not

Sn-invariant. The minimal such r is called the rank(Θn ,Cn)(p).

Decompositions without invariance

The first result on the existence of polynomial decompositions does not

involve any invariance. It is an adaption of the result for tensor decompo-

sitions [37, Theorem 11], which we will prove here for completeness.

Theorem 5.1.1 (Existence of Ω-decompositions)

For every connected WSC Ω and every p ∈ P there exists an Ω-

decomposition of p. Moreover, the Ω-decomposition can be obtained

by using nonnegative multiples of the elementary decomposition

p =
∑
j∈I

p[1]j (x[1]) · p[2]j (x[2]) · · · p[n]j (x[n]) (5.6)

where I is a finite index set and p[i]j ∈ R[x[i]] for all j ∈ I .

Proof. We start with an elementary polynomial decomposition of Equa-

tion (5.6). This will show that rankΣn(p) < ∞. For i ∈ [n] and β ∈ I F̃i

we define

p[i]β :=

{
p[i]j : β takes the constant value j ∈ I
0 : else.

(5.7)
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Since Ω is connected, for α ∈ I F̃
the restricted functions α|i are all

constant if and only if α is constant. It follows that∑
α∈I F̃

p[1]α|1
(x[1]) · · · p[n]α|n

(x[n]) =
∑
j∈I

p[1]j (x[1]) · · · p[n]j (x[n])

= p(x[1], . . . , x[n])

is an Ω-decomposition of p.

Note that the Ω-decomposition obtained by reusing the polynomials of

Equation (5.6) may not be optimal, i.e. it may need more terms than its

rank.

Invariant decompositions with free group actions

Wenowshow that ifG acts freely onΩ, then everyG-invariant polynomial

admits an (Ω, G)-decomposition.
4
The proof is similar to that of [37, 4: Recall that free was defined in Defini-

tion 2.2.5.
Theorem 13] for tensors. We will illustrate the idea of the proof on the

double edge ∆ in Example 5.1.6.

Theorem 5.1.2 ((Ω, G)-decompositions with free group actions)

Let Ω be a connected weighted simplicial complex, G a free group

action on Ω, and p ∈ P a G-invariant polynomial. Then:

▶ The polynomial p admits an (Ω, G)-decomposition.

▶ Given a Σn-decomposition, an (Ω, G)-decomposition of p can

be obtained by using only nonnegative multiples of the local

polynomials in the Σn-decomposition.

As in Theorem 5.1.1, the (Ω, G)-decomposition obtained by “reusing”

the polynomials of Equation (5.6) will generally not be optimal.

The idea of the proof is simple. Starting from the decomposition in

Equation (5.6), we essentially build

1
|G|

∑
g∈G

gp = p

where gp is defined in Equation (5.4), and let g act on each of the local

terms in the decomposition. The latter can then be transformed into an

(Ω, G)-decomposition of p.

For the proof of this theorem we need a preparatory lemma:

Lemma 5.1.3

A group action G on the WSC Ω is free if and only if there exists a

G-linear map

z : F̃ → G

where G acts on itself via left-multiplication (which is obviously

free).



78 5 Polynomial decompositions inspired by tensors

Proof. To construct z for a free action, choose for each orbit an element F
and map gF to g. The reverse implication is immediate.

Proof of Theorem 5.1.2. Since G acts freely, by Lemma 5.1.3, there exists a

G-linear map z : F̃ → G, where G acts on itself by left-multiplication.

In the following, we fix one such mapping. For the polynomial p we

first obtain by Theorem 5.1.1 an Ω-decomposition and denote the local

elements by

Q[i] :=
(

q[i]β (x[i])
)

β∈I F̃i

where q[i]β (x[i]) ∈ R[x[i]] for every i ∈ [n]. We define a new index set

Î := I × G

together with the projection maps π1 : Î → I and π2 : Î → G. For each

i ∈ [n] and β ∈ Î F̃i we define the following local polynomials:

p[i]β :=

{
q[gi]

g(π1◦β)
(x[i]) : π2 ◦ β = (g−1

z)|i
0 : else.

Note that p[i]β (x[i]) is well-defined since g is uniquely determined by the

relation π2 ◦ β = (g−1
z)|i if such a g exists. This is due to the fact that

if (g−1
1 z)|i = (g−1

2 z)|i we have g1 · z(F) = g2 · z(F) for any F ∈ F̃i by

G-linearity of z. But this implies that g1 = g2. In addition, the defined

local polynomials satisfy Definition 5.1.1 (b) since for g, h ∈ G we obtain

p[hi]
h β

(x[i]) = q[ghi]
g(π1◦h β)

(x[i]) = q[ghi]
gh(π1◦β)

(x[i]) = p[i]β (x[i])

using the fact that

π2 ◦ hβ =
(

g−1
z
)
|hi

⇐⇒ π2 ◦ β =
(
(gh)−1

z
)
|i

.

It only remains to show that the local polynomials form an (Ω, G)-
decomposition of p. To this end we compute∑

α̂∈Î F̃

p[1]α̂|1
(x[1]) · · · p[n]α̂|n

(x[n])

=
∑

z∈GF̃

∀i∃gi :z|i=
(

g−1
i z

)
|i

∑
α∈I F̃

q[g11]
g1 (α|1 )

(x[1]) · · · q[gnn]
gn (α|n )

(x[n]).

Using that Ω is connected and z is G-linear, for each z fulfilling the

conditions from the outer sum on the right, we obtain gi = gj =: g for

all i, j ∈ [n]. So the corresponding inner sum becomes∑
α∈I F̃

q[g1]
g(α|1 )

(x[1]) · · · q[gn]
g(α|n )

(x[n]) = p(x[g
−11], . . . , x[g

−1n])

= p(x[1], . . . , x[n]),

using G-invariance of p. Hence the total sum equals a positive multiple of
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p, where the factor is the number of all z which fulfill the above conditions.

In fact, this number is just |G|, since the g−1
z for g ∈ G are precisely the

different choices for z. So dividing by |G| and absorbing its positive nth

root into the local polynomials yields an (Ω, G)-decomposition of p. The
last statement is immediate by construction.

The following are some immediate relations between the various notions

of ranks, based on the proofs of Theorem 5.1.2 and Theorem 5.1.2.

Corollary 5.1.4 (Relations among ranks)

Let Ω be connected and G a free group action on Ω, and Σn the

simplex.
5

5: Defined in Example 2.2.1.Then for every G-invariant p ∈ P we have

rank(Ω,G)(p) ⩽ |G| · rankΩ(p) ⩽ |G| · rankΣn(p).

In words, the first inequality says that one can impose invariance by

increasing the rank by a factor of at most |G|. The second inequality

says that the standard tensor rank is always the most expensive rank, i.e.

having one joint index is the most costly decomposition.

Proof. The first inequality is immediate from the construction in the proof

of Theorem 5.1.2, and the second inequality follows from the construction

in the proof of Theorem 5.1.1.

Let us now illustrate the proof of Theorem 5.1.2 for the double edge.

Example 5.1.6 (Invariant decomposition on the double edge)

The cyclic group C2 provides a free group action on the double edge

∆, so every C2-invariant polynomial admits a (∆, C2)-decomposition,

given by Equation (5.5). Let us now construct this decomposition.

For the group action of C2 = {e, c} on F̃ = {a, b} (with ca = b) there

exists a G-linear map z : F̃ → G, which can be chosen as
6

6: There is exactly one other choice,

namely exchanging the two outcomes

of z.z : a 7→ e, b 7→ c.

We start with a ∆-decomposition of p, namely

p =
r∑

α,β=1

q[1]α,β(x
[1]) · q[2]β,α(x

[2]),

where we associate index α with a and β with b. To construct a (∆, C2)-
decomposition, we extend the indices α, β to tuples (α, g1), (β, g2)where

g1, g2 ∈ C2. We define the local polynomials as

p[1]
(α,g1),(β,g2)

(x[1]) :=


q[1]α,β(x

[1]) if (g1, g2) = (e, c)

q[2]β,α(x
[1]) if (g1, g2) = (c, e)

0 else
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and

p[2]
(α,g1),(β,g2)

(x[2]) :=


q[2]α,β(x

[2]) if (g1, g2) = (e, c)

q[1]β,α(x
[2]) if (g1, g2) = (c, e)

0 else.

For α, β ∈ {1, . . . , r} and g1, g2 ∈ C2, the symmetry condition gives rise

to the definition

p[c1]
c((α,g1),(β,g2))

= p[2]
(β,g2),(α,g1)

= p[1]
(α,g1),(β,g2)

=: p(α,g1),(β,g2)
.

In addition, it is easy to verify that

∑
g1,g2∈C2

r∑
α,β=1

p(α,g1),(β,g2)
(x[2]) · p(β,g2),(α,g1)

(x[2])

=p(x[1], x[2]) + p(x[2], x[1]) = 2p(x[1], x[2])

which shows that the local polynomials
1√
2
· p(α,g1),(β,g2)

form a (∆, C2)-

decomposition of p. This also implies rank(∆,C2)
(p) ⩽ 2 · r.

Invariant decompositions with blending group actions

Since the full symmetry group Sn is not free on the simplex Σn, Theorem

5.1.2doesnot say anythingabout the existenceof (Σn, Sn)-decompositions.

In fact, for real polynomials, such decompositions may not exist (see

Example 5.1.7). Nonetheless, we can prove another, weaker existence

result for polynomial decompositions with a blending
7
group action G7: See Definition 2.2.5 for free group ac-

tions.
(Theorem 5.1.7). In preparation for this result we need the following two

lemmas. The first lemma introduces a “negative part” in the symmetric

decomposition, which can be omitted if n is odd:

Lemma 5.1.5 (Symmetric decompositions for tensors [32])

Let |T⟩ ∈ Rd ⊗ · · · ⊗ Rd ∼= Rnd
be Sn-invariant.

8
8: i.e. for every i1, . . . , in ∈ {1, . . . , d}
and permutation σ ∈ Sn we have

⟨i1, . . . , in | T⟩ = ⟨σ(i1), . . . , σ(in) | T⟩ .

Then there exist

r1, r2 ∈ N and |v1⟩ , . . . , |vr1⟩ , |vr1+1⟩ , . . . , |vr1+r2⟩ ∈ Rd
such that

|T⟩ =
r1∑
ℓ=1

|vℓ⟩⊗n −
r1+r2∑
ℓ=r1+1

|vℓ⟩⊗n
(5.8)

If n is odd, there exists a decomposition

|T⟩ =
r1∑
ℓ=1

|vℓ⟩⊗n .

The last statement is not given in [32], but it is obvious, since the minus

sign can be absorbed into the odd number of terms n.99: This is because (−1)n = −1 for odd

n.
The minus sign in Equation (5.8) is necessary. Consider for example

the the simple case of real matrices, namely when the corresponding

tensor |T⟩ lives in the space Rd ⊗ Rd ∼= Matd(R). Without a minus sign,
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Equation (5.8) in the matrix picture would read
10

10: by using the correspondence be-

tween |v⟩ |w⟩ and |v⟩ ⟨w|.

T =

r1∑
ℓ=1

|vℓ⟩ ⟨vℓ| ≽ 0

implying that every symmetric matrix is psd which is false. (see also

Example 5.1.7).

In the next lemma we show subadditivity and submultiplicativity of the

(Ω, G)-rank. For a proof, we refer to [37, Proposition 16].

Lemma 5.1.6 (Subadditivity and submultiplicativity [37])

Let p1, p2 ∈ P .

(i) rank(Ω,G)(p1 + p2) ⩽ rank(Ω,G)(p1) + rank(Ω,G)(p2)
(ii) rank(Ω,G)(p1 · p2) ⩽ rank(Ω,G)(p1) · rank(Ω,G)(p2)

We are now ready to prove the existence of invariant decompositions

with blending group actions.

Theorem 5.1.7 (Invariant decompositions, blending actions)

Let Ω be a connected WSC and G a blending group action on Ω. For

any G-invariant p ∈ P there exist two polynomials q1, q2 ∈ P with

p = q1 − q2,

where q1, q2 attain an (Ω, G)-decomposition. If n is odd we can set

q2 = 0.

Proof. We start with a non-invariant decomposition of p, as given in

Equation (5.6), where I is a finite index set. Nowwe choose real numbers

d[i]ℓ ∈ R for i ∈ [n] and ℓ ∈ {1, . . . , r1 + r2}, such that the following

holds:

r1∑
ℓ=1

d[i1]ℓ · · · d[in ]ℓ −
r2∑

ℓ=r1+1

d[i1]ℓ · · · d[in ]ℓ =

{
1 : {i1, . . . , in} = [n]
0 : else

This is possible because the tensor on the right hand side is real and

symmetric, hence the existence follows by Lemma 5.1.5. For i ∈ [n],
ℓ ∈ {1, . . . , r1 + r2} and β ∈ I F̃i we define

p[i]ℓ,β(x
[i]) :=


∑
g∈G

d[gi]
ℓ p[gi]

j (x[i]) : β is the constant j ∈ I

0 : else

.

For fixed ℓ, the polynomials p[i]ℓ,β satisfy Definition 5.1.1 (b) and hence

give rise to (Ω, G)-decompositions of polynomials

p1, . . . , pr1 , pr1+1, . . . , pr1+r2 .
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We now define q1 as

q1 :=
r1∑
ℓ=1

pℓ =

r1∑
ℓ=1

∑
α∈I F̃

p[1]ℓ,α|1
(x[1]) · · · p[n]ℓ,α|n

(x[n])

=
∑

g1,...,gn∈G

r1∑
ℓ=1

d[g11]
ℓ · · · d[gnn]

ℓ

∑
j∈I

p[g11]
j (x[1]) · · · p[gnn]

j (x[n])

where we have used that Ω is connected in the third equality, and thus

α|i constant for all i if and only if α is constant. Note that q1 has an

(Ω, G)-decomposition by Lemma 5.1.6, since all pℓ do. We define q2
similarly as

q2 :=
r2∑

ℓ=r1+1

pℓ.

Because of the definition of d[i]ℓ , and the fact that the action of G is

blending, the difference q1 − q2 simplifies to

q1 − q2 =
∑

g1,...,gn∈G
{g11,...,gnn}=[n]

∑
j∈I

p[g11]
j (x[1]) · · · p[gnn]

j (x[n])

∼
∑
g∈G

∑
j∈I

p[g1]
j (x[1]) · · · p[gn]

j (x[n]) = |G| · p

where ∼ stands for positive multiple of. Note that we have used that

p is G-invariant in the last equality. Dividing by |G| and the positive

scaling factor proves the statement, since the scaling can be absorbed in

the local polynomials. The last statement of the theorem follows from

the statement in Lemma 5.1.5 for even n.

Example 5.1.7 (The minus sign in the single and double edge)

The minus sign in the decomposition of Theorem 5.1.7 is necessary

(as long as we do not switch to complex coefficients). For example, the

polynomial p = x2 + y2
is C2-invariant, and since C2 is blending on the

single edge Λ2, there exists an (Λ2, C2)-decomposition for p with this

additional minus sign (by Theorem 5.1.7):

p = x2 + y2 = p1(x) · p1(y)− p2(x) · p2(y)

where

p1(t) =
1√
2
(1 + t2) and p2(t) =

1√
2
(1 − t2).

But for degree reasons there cannot exist an actual (Λ2, C2)-
decomposition for p, i.e. an invariant decomposition without the addi-

tional minus sign.

On the other hand, the refinement of Λ2 to the double edge ∆ allows for

a free group action of C2. Hence there exists a (∆, C2)-decomposition of

p (by Theorem 5.1.2), given for example by

x2 + y2 =
2∑

α,β=1

pα,β (x) · pβ,α (y)
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where p1,1(t) = 0, p1,2(t) = t2, p2,1(t) = 1 and p2,2(t) = 0. This shows

that rank(∆,C2)
(p) = 2.

5.1.3 The invariant separable decomposition

In this section we assume that every local space of polynomials is

equipped with a convex cone C [i] ⊆ R[x[i]], i.e. a set which fulfills

αp + βq ∈ C for all p, q ∈ C and α, β ⩾ 0. Important examples of such

cones are the cone of sum-of-squares (sos) polynomials

Csos :=

{
p ∈ R[x] : p =

N∑
k=1

q2
k for some qk ∈ R[x], N ∈ N

}
,

the cone of nonnegative polynomials

Cnn := {p ∈ R[x] : p(a) ⩾ 0 for all a ∈ Rm} ,

and the cone of polynomials with nonnegative coefficients
11

11: In this definition, we use the notation

where

α := (α1, . . . , αn)

is an n-tuple, with

xα := xα1
1 · · · xαn

n .

C
nn-coeff

:=

p ∈ R[x] : p =
∑

α∈{1,...,d}n

cαxα
with all cα ⩾ 0

 .

For a given set of local cones C [1], . . . , C [n]
we define the global separable

cone

Csep := C [1] ⊗ C [2] ⊗ · · · ⊗ C [n]

:=


r∑

j=1

p[1]j · · · p[n]j : r ∈ N, p[i]j ∈ C [i]

 ⊆ P .

This is the smallest global convex cone generated by the elementary

tensors formed from the local cones. For a given group action of G on Ω,

we further assume that C [i] = C [gi]
for all g ∈ G.

12
12: We suppress again the canonical iso-

morphism between the local polynomial

spaces in the notation.

We now define and study the invariant separable decomposition of

polynomials, i.e. decompositions which are inherently G-invariant and

where the containment in the separable cone is explicit — i.e. a positive

combination of elementary polynomials where each factor is in the local

cone.

Definition 5.1.2 (Invariant separable decomposition)

Let p ∈ Csep. A separable (Ω, G)-decomposition of p is an (Ω, G)-
decomposition

P [i] :=
(

p[i]β

)
β∈I F̃i

with the restriction that

p[i]β ∈ C [i]

for all i ∈ [n] and β ∈ I F̃i .
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The minimal cardinality of I among all separable (Ω, G)-decomposition

of p is called the separable (Ω, G)-rank of p, denoted sep-rank(Ω,G)(p). If
p does not admit an (Ω, G)-decomposition, we set

sep-rank(Ω,G)(p) = ∞.

IfG is the trivial group action,we call the separable (Ω, G)-decomposition

just separable Ω-decomposition, and its minimal number terms the separable
rank, denoted sep-rankΩ.

We now show the existence of invariant separable decompositions with

free group actions. This follows from Theorem 5.1.2, as it can be con-

structed via positive multiples of the initial decomposition.

Theorem 5.1.8 (Invariant separable decompositions)

Let Ω be a connected WSC with a free group action G. Ev-

ery G-invariant polynomial p ∈ Csep admits a separable (Ω, G)-
decomposition.

Proof. Let p be decomposed as in Equation (5.6) with p[i]j ∈ C [i]
, which is

a separable decomposition of p. Applying the construction of the proof

of Theorem 5.1.2 we obtain a separable (Ω, G)-decomposition, since all

local polynomials p[i]β are positive multiples of p[gi]
j for g ∈ G. Since the

local cones coincide on the orbits of G, this guarantees that p[i]β ∈ C [i]
.

Example 5.1.8 (Separable decomposition on the double edge)

The (∆, C2)-decomposition of p = x2 + y2
given in Example 5.1.7 is in

fact an invariant separable decomposition with respect to the local sos

cones, proving that sep-rank(∆,C2)
(p) = rank(∆,C2)

(p) = 2.

We can now easily promote the results of Corollary 5.1.4 to the (invariant)

separable ranks. The proof is analogous.

Corollary 5.1.9 (Relation between separable ranks)

Let Ω be connected and G a free group action on Ω. Then for every

G-invariant p ∈ P we have

sep-rank(Ω,G)(p) ⩽ |G| · sep-rankΩ(p) ⩽ |G| · sep-rankΣn
(p).

Note that an analogue of Theorem 5.1.8 for blending group actions

is not true. One reason is that, if the action is blending, we cannot

construct a decomposition using the local polynomials from the initial

tensor decomposition. This is visible in the simplest case, namely for

(Λ2, C2)-decompositions, illustrated in Example 5.1.7. Another reason

is that Theorem 5.1.7 (with blending group actions) uses a difference of
two (Ω, G)-decompositions, and a difference of separable elements is in

general not separable.

Finally we show that the global cone of sos polynomials Csos is strictly

larger than the cone of separable polynomials over local sos polynomials
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Csep = C [1]
sos ⊗ · · · ⊗ C [n]

sos, i.e.

C [1]
sos ⊗ · · · ⊗ C [n]

sos ⊊ Csos.

In other words, there exist polynomials which admit a sos decomposition

over all variables, but cannot be written as tensor decomposition where

every term is a sos polynomial. This is even true for polynomials in

two variables x and y, as the following example shows. The example

relies on the Gram map, which will be the cornerstone of invariant sos

decompositions (Section 5.1.4). Moreover, it relies on the standard result

that the set of separable matrices is strictly smaller than the set of psd

matrices.

Example 5.1.9 (sos polynomials which are not separable)

We consider the following Gram map G between real-valued matrices

M ∈ Mat2(R)⊗ Mat2(R) and polynomials p ∈ R[x, y]:

G : M 7→ p := m1(x)t ⊗m1(y)t · M ·m1(x)⊗m1(y)

where m1(x) := (1, x)t
is the monomial basis in x of degree at most 1.

It is well-known (and easy to see) that for degloc(p) ⩽ 2 we have

p ∈ Csos if and only if there exists a psd M ∈ Mat2(R) ⊗ Mat2(R)
with G(M) = p. Further, p ∈ Csep if and only if there exists an M ∈
Mat2(R)⊗ Mat2(R) that is separable13 13: i.e. there exists a decomposition

M =
r∑

j=1

M[1]
j ⊗ M[2]

j

where all M[i]
j are psd.

and G(M) = p.
For example, consider the matrix

M =
1∑

ij=0

|i⟩ ⟨j| ⊗ |i⟩ ⟨j| = |Φ+⟩ ⟨Φ+| =


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


where |Φ+⟩ = |0, 0⟩+ |1, 1⟩ ∈ R2 ⊗ R2

is known as an (unnormalized)

Bell state. Note that M is psd but not separable, which can easily be seen

with the positive partial transposition criterion [96, 66].
14

14: The positive partial transpose cri-

terion is a necessary criterion for bi-

partite states to be separable. If ρ ∈
Matd(R)⊗ Matd(R) is separable, then
ρt2 is psd, where

ρt2 :=
r∑

j=1

Aj ⊗ Bt
j

for

ρ =
r∑

j=1

Aj ⊗ Bj.

Furthermore,

M is the only psd matrix representing the polynomial

p = 1 + 2xy + x2y2 = (1 + xy)2 = G(M),

since the matrix

Mα =


1 0 0 1 − α

0 0 α 0
0 α 0 0

1 − α 0 0 1


is not psd for any α ∈ R \ {0}, and

G−1({p}) = {Mα : α ∈ R}.

This implies that p = (1 + xy)2
is sos but not separable with respect to

the local sos cones.

More generally, in order to show that a polynomial is sos but not

separable, one needs to show that every psd matrix M with G(M) = p
is not separable. This is generally a hard problem.
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5.1.4 The invariant sum-of-squares decomposition

In this section we introduce a sum-of-squares (sos) decomposition in the

(Ω, G)-framework. First, notice that not every G-invariant sos polynomial

p can be decomposed into G-invariant polynomials qk via p =
∑N

k=1 q2
k ,

as the following example shows.

Example 5.1.10 (Absence of stringent invariant sos decomposition)

Consider again p = x2 + y2
, which is obviously sos and C2-invariant,

i.e. invariant with respect to permuting x and y. Yet, there does not exist
a decomposition

p =
N∑

k=1

q2
k where all qk are C2-invariant.

To see this, assume the contrary. Since deg(qk) ⩽
1
2 deg(p), each poly-

nomial can be written as qk = akx + aky + bk. Further, since p has no

constant term, we must have bk = 0. But this is impossible, since the xy
coefficient of p is zero.

We term the previous definition of an invariant sos decomposition

stringent, and now introduce a more ‘relaxed’ one, which allows for

permutations among elements of the family {qk}, and which is the

correct notion as far the existence results are concerned, as we will later

show. So let G act on [n], and equip the finite index set

S = S1 × . . . × Sn

with the induced group action

gk := (kg−11, . . . , kg−1n)

for every k = (k1 . . . , kn) ∈ S and g ∈ G. We say that the family of

polynomials q = (qk)k∈S is G-invariant if

qgk = gqk

for all g ∈ G and k ∈ S . This equation can be spelled out as

qgk(x[1], . . . , x[n]) = qk(x[g1], . . . , x[gn]).

Now, if q is G-invariant, the resulting sos polynomial

p =
∑
k∈S

q2
k

is also G-invariant (since k 7→ gk is a bĳection on S). In Theorem 5.1.11

(i), we will prove the reverse direction, namely that every G-invariant sos

polynomial p has a G-invariant family of polynomials q.

To prove this result, we leverage a correspondence between matrices

and polynomials given by the Gram map G (similarly to Example 5.1.9).

For simplicity, we assume for the rest of this section that every local
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polynomial space uses the same number of variables, i.e.

P = R[x[1]]⊗ · · · ⊗ R[x[n]]

where x[i] = (x[i]1 , . . . , x[i]m ) for each i ∈ [n]. Now consider a polynomial

p ∈ P with degloc(p) ⩽ 2d. We can represent p via the Gram map

G : MatD(R)⊗n → P
M 7→ ⟨mn,d| M |mn,d⟩

where |mn,d⟩ = |md(x[1])⟩ ⊗ · · · ⊗ |md(x[n])⟩ and we define |md(x)⟩
to be the monomial basis in x consisting of all monomials of degree

at most d. In other words, for indices i1, . . . , in ∈ {0, . . . , d} such that

i1 + . . . + in ⩽ d, we have

⟨i1, . . . , in |md(x)⟩ = xi1
1 · · · xin

n .

In addition, MatD(R) is the space of real matrices of size D × D, where

D = (m+d
d ). Note that D is also the number of monomials in m variables

of degree at most d. We say that the matrix M =
∑N

j=1 M[1]
j ⊗ · · · ⊗ M[n]

j
is G-invariant if

gM :=
N∑

j=1

M[g−11]
j ⊗ · · · ⊗ M[g−1n]

j = M

for every g ∈ G, that is, if M is invariantwith respect to all permutations of

the tensor factors induced by the group action of G on [n]. This generalizes
the Gram map for multivariate polynomials without invariance [25].

Lemma 5.1.10 (Gram matrix of invariant sos polynomials)

Let p ∈ P with degloc(p) ⩽ 2d. The following are equivalent:

(i) p is sos and G-invariant.

(ii) There exists an M ∈ MatD(R)⊗n
that is psd and G-invariant

such that G(M) = p.

Proof. (ii) =⇒ (i). If there exists such an M, since it is psd, it has a rank

decomposition M =
∑

k |vk⟩ ⟨vk| where |vk⟩ ∈
(
RD)⊗n

. This gives rise

to a sos decomposition of p via G. Furthermore, since gM = M for all

g ∈ G, we obtain

gp = p(x[g1], . . . , x[gn])

= ⟨md(x
[g1])| · · · ⟨md(x

[gn])| M |md(x
[g1])⟩ · · · |md(x

[gn])⟩

= ⟨md(x
[g1])| · · · ⟨md(x

[gn])| g−1M |md(x
[g1])⟩ · · · |md(x

[gn])⟩
= p

where the second equality holds by the G-invariance of M, and the last

equality by the commutativity of polynomial multiplication.

(i) =⇒ (ii). Assume that p =
∑N

k=1 q2
k is G-invariant. Define |vk⟩ ∈(

RD)⊗n
such that qk = ⟨vk |mn,d⟩ defines a psd matrix M′ =

∑N
k=1 vkvt

k
with G(M′) = p, where M′

need not be G-invariant. By the G-invariance
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of p, we additionally have that G(gM′) = p for every g ∈ G. Defining

M as the average

M =
1
|G|

∑
g∈G

gM′

we obtain a G-invariant and psd matrix M. By linearity of the Grammap,

we have that G(M) = p.

Remark 5.1.1 (Gram matrix of invariant separable polynomials)

A similar version of Lemma 5.1.10 relates invariant separable poly-

nomials

p ∈ Csep = C [1]
sos ⊗ · · · ⊗ C [n]

sos

with invariant separable matrices M. The only difference is that the

vectors |vk⟩ should be elementary tensors factors.

In order to state and prove the main result of this section (Theorem

5.1.11), it only remains to define sos (Ω, G)-decompositions—this is the

non-stringent version advocated above.

Definition 5.1.3 (Invariant sos decompositions)

Let G be a group action on the WSC Ω, and let

q = (qk)k∈S

be a family of polynomials.

(i) An (Ω, G)-decomposition of the family q is a decomposition

qk =
∑

α∈I F̃

q[1]k1,α|1
(x[1]) · · · q[n]kn ,α|n

(x[n])

for every k ∈ S , where

q[i]ki ,β
∈ R[x[i]]

and

q[i]ki ,β
(x[i]) = q[gi]

ki ,g β(x
[i])

for every i ∈ [n], β ∈ I F̃i , g ∈ G and k ∈ S . The smallest

cardinality of I among all (Ω, G)-decompositions is called the

(Ω, G)-rank of q, denoted rank(Ω,G)(q).
(ii) An sos (Ω, G)-decomposition of p ∈ P is given by a sos decom-

position into a family q

p =
∑
k∈S

q2
k,

together with an (Ω, G)-decomposition of q. The minimal

(Ω, G)-rank among all such sos decompositions is called the

sos (Ω, G)-rank of p, denoted sos-rank(Ω,G)(p). If G is the

trivial group action, we call the sos (Ω, G)-decomposition just

sos Ω-decomposition and denote its rank by sos-rankΩ.
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We are now ready to prove the main result on the existence of invariant

sos polynomials:

Every G-invariant sos polynomial p has a G-invariant family q (Theorem

5.1.11 (i)), and q has an (Ω, G)-decomposition if G is a free group action

on Ω (Theorem 5.1.11 (ii)). The idea of the proof of Theorem 5.1.11 (i) is to

define q as the square root of p, and show that this square root is also

G-invariant. Some ideas of the proof are illustrated in Example 5.1.11.

Theorem 5.1.11 (Invariant sos decompositions)

Let Ω be a connected WSC with a free group action G. Furthermore,

let p ∈ P be a G-invariant sos polynomial.

(i) There exists a G-invariant family of polynomials q = (qk)k∈S
such that

p =
∑
k∈S

q2
k.

Moreover, every element qk admits a decomposition in which

the local polynomials at site i only depend on ki, namely

qk =
∑
j∈I

q[1]k1,j(x
[1]) · · · q[n]kn ,j(x

[n]).

(ii) The invariant family q admits an (Ω, G)-decomposition.

Note that in [55, Theorem 5.3], the au-

thors prove the existence of so-called

semi-symmetric sos decompositions for

general representations of finite groups,

by using Schur’s lemma on the Gram

matrix. Theorem 5.1.11 (i) is weaker than

this statement, as it only considers group

actions that permute the tensor product

spaces, but gives an elementary proof.

Proof. (i) We denote the monomial x = (x1, . . . , xm) with exponent

α = (α1, . . . , αm) by xα = xα1
1 · xα2

2 · · · xαm
m . Without loss of generality we

can assume that degloc(p) ⩽ 2d. Define

Si =
{

k ∈ Nm : |k| ⩽ d
}

and S = S1 × · · · × Sn. Note that S can be identified with the set of

monomials in P of local degree at most d via the correspondence

S → Pd : k 7→ xk :=
(

x[1]
)k1 · · ·

(
x[n]
)kn

.

Note also that the permutations of variables x[i] 7→ x[gi]
coincide with

the group action of G on S , since(
x[g1]

)k1 · · ·
(

x[gn]
)kn

=
(

x[1]
)kg−11 · · ·

(
x[n]
)kg−1n . (5.9)

Since p is G-invariant and sos, by Lemma 5.1.10 there exists a psd and

G-invariant matrix M such that G(M) = p. Now let B be the (unique)

psd square root of M, i.e. M = B2
. Since M is a psd matrix, B admits a

polynomial expression in M and hence B is also G-invariant. Define the

polynomials qk as

qk =
∑
k′∈S

Bk,k′

(
x[1]
)k′1 · · ·

(
x[n]
)k′n
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for k ∈ S . The family q = (qk)k∈S is G-invariant, since

gqk =
∑
k′∈S

Bgk,gk′

(
x[1]
)k′

g−11 · · ·
(

x[n]
)k′

g−1n

=
∑
k′∈S

Bgk,k′

(
x[1]
)k′1 · · ·

(
x[n]
)k′n

= qgk

where we have used the fact that Bk,k′ = Bgk,gk′ for every g ∈ G (which

is just the G-invariance of B), together with Equation (5.9) and bĳectivity

of the map k′ 7→ gk′
. In addition,∑

k∈S
q2

k = ⟨mn,d| BtB |mn,d⟩ = G(M) = p

since BtB = B2 = M. Moreover, B admits a tensor decomposition

Bk,k′ =
∑
j∈I

(
B[1]

j

)
k1,k′1

· · ·
(

B[n]
j

)
kn ,k′n

.

Using the definition of qk leads to the last statement of (i).

(ii) The proof is similar to that of Theorem 5.1.2. Start with decompositions

qk =
∑
j∈I

q[1]k1,j(x
[1]) · · · q[n]kn ,j(x

[n])

for every k = (k1, . . . , kn) ∈ S . From the construction of Theorem 5.1.1

it follows that every polynomial qk has a decomposition of the form

qk =
∑

α∈I F̃

p[1]k1,α|1
(x[1]) · · · p[n]kn ,α|n

(x[n])

where F̃ is the set of facets of Ω. We now construct a decomposition

for every qk which additionally satisfies the symmetry conditions of

Definition 5.1.3 (i). Since G is free, by Lemma 5.1.3, there exists a G-linear

map z : F̃ → G. We consider the new index set Î := I × G, together

with the projection maps π1 : Î → I and π2 : Î → G. For each i ∈ [n]
and β ∈ Î F̃i we define the following local polynomials

q[i]ki ,β
(x[i]) :=

{
p[gi]

ki ,g(π1◦β)
(x[i]) : π2 ◦ β = (g−1

z)|i
0 : else.

Similarly to the discussion in the proof of Theorem 5.1.2 we see that

q[gi]
ki ,g β(x

[i]) = q[i]ki ,β
(x[i])

and

|G| · qk =
∑

α̂∈Î F̃

q[1]k1,α̂|1
(x[1]) · · · q[n]kn ,α̂|n

(x[n])

holds for every k ∈ S . But this implies the existence of an (Ω, G)-
decomposition of q.

From Theorem 5.1.11 the following statement immediately follows:
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Corollary 5.1.12 (sos polynomials with free group action)

Let Ω be a connectedWSCwith a free group action from G. Then ev-

ery sos and G-invariant p ∈ P admits an sos (Ω, G)-decomposition.

We end this section with an explicit example of an invariant sos decom-

position.

Example 5.1.11 (Invariant sos decompositions)

Consider again the polynomial from Example 5.1.3,

p = x2 + y2 + 4(1 + xy)2,

which is sos and invariant with respect to the permutation of x and y.
We have already seen that rank(∆,C2)

(p) = 2. By a similar argument as in Example

5.1.9, it can be shown that p is not sepa-

rable with respect to the local sos cones.

To obtain a sos (∆, C2)-decomposition, we follow the proof of Theorem

5.1.11. We obtain S = {0, 1}× {0, 1}with G = C2 permuting the entries

of the tuples, and obtain a C2-invariant sos decomposition of p via the

following family of polynomials:

q(0,0) = q(1,1) =
√

2(1 + xy), q(0,1) = y, q(1,0) = x.

On the double edge ∆ we obtain an (∆, C2)-decomposition of the family

via the following family of polynomials

q[1]0 =


4
√

2t 1√
2

0
1 0 0
0 0 0

 , q[2]0 = q[1]0

t

q[1]1 =

 0 0 0√
2t 4

√
2t 0

0 0 4
√

2

 , q[2]1 = q[1]1

t
.

where thematrix notationdenotes that the rows are indexedby α = 1, 2, 3
and the columns by β = 1, 2, 3. This shows that

sos-rank(∆,C2)
(p) ⩽ sos-rank(∆,C2)

(q) ⩽ 3.

On the single edge Σ1, a decomposition of q requires vectors

|a⟩ , |b⟩ , |c⟩ , |d⟩ ∈ Rd
of length

4
√

2, with |a⟩ , |b⟩ , |c⟩ pairwise orthog-

onal, |d⟩ orthogonal to |b⟩ and |c⟩, and ⟨a | d⟩ = 1. This is provided

by

q[1]0 = q[2]0 =
(
⟨α | a⟩+ ⟨α | b⟩ t

)
α=1,...,d

q[1]1 = q[2]1 =
(
⟨α | c⟩+ ⟨α | d⟩ t

)
α=1,...,d

where ( )α denotes a vector indexed by α. Since such vectors can only be

found in dimension d ⩾ 4, we obtain

sos-rank(Λ2,C2)
(p) ⩽ sos-rank(Λ2,C2)

(q) = 4.
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We can also write p as a sum of symmetric squares:

p =

(
2 +

3
2

xy
)2

+ (x + y)2 +

(√
7
4

xy

)2

.

We now reset the variables S1 = S2 = {1, 2, 3},S = S1 ×S2, as well as

q(1,1) = 2 +
3
2

xy, q(2,2) = x + y, q(3,3) =

√
7
4

xy,

and all other qk = 0. This gives rise to the C2-invariant family q =
(qk)k∈S that provides an sos decomposition of p with

sos-rank(∆,C2)
(q) ⩽ 3.

But for the single edge, there does not exist a decomposition for the

family q. This is because already q(2,2) = x + y does not admit an

(Λ2, C2)-decomposition (without a minus sign). So

sos-rank(Λ2,C2)
(q) = ∞.

5.2 Inequalities and separations between the

ranks

In this section, we study rank inequalities (Section 5.2.1), provide an

upper bound for the separable rank (Section 5.2.2), and show separations

between ranks (Section 5.2.3).

5.2.1 Inequalities between ranks

In this section, we show three relations between the introduced ranks

(Proposition 5.2.2), which are similar to the statements established for

tensor decompositions in [37, Proposition 29]. For the inequality between

sos and separable decompositions we will need to assume that (Ω, G) is
factorizable:

Note that Equation (5.10) can be seen as

a system of linear equations by taking

the logarithm on the left and the right

hand side.

Definition 5.2.1 (Factorizable)

Let Ω be a WSC with a group action from G. We say that (Ω, G)
is factorizable if for each finite index set I the following system of

equations admits a solution with all C[i]
β > 0 and C[gi]

g β = C[i]
β for all

i ∈ [n], β ∈ I F̃i , and g ∈ G:

C[1]
α|1

· C[2]
α|2

· · ·C[n]
α|n

= K−1
α for all α ∈ I F̃ , (5.10)

where

Kα :=

∣∣∣∣∣
{

γ ∈ I F̃ :
∃g1, . . . , gn ∈ G with gii = i and

(gi γ)|i = α|i for all i ∈ [n]

}∣∣∣∣∣ .
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All examples of group actions on a weighted simplicial complex Ω
considered in this paper are factorizable, as the following example

shows.

Example 5.2.1 (Factorizable group actions)

Le us now present some examples of factorizable group actions:

(i) If Kα = 1 for every α ∈ I F̃
, then C[i]

β = 1 solves Equation (5.10).

This in particular shows that (Ω, G) is factorizable whenever the

action of G on the vertices [n] is free. In addition, this also implies

that (Σn, Sn) is factorizable.
(ii) Let Ω = ∆ be the double edge and let G = {e, g} act by keeping

the vertices fixed (i.e. ei = gi = i) and flipping the facets (i.e.

ga = b, gb = a)15 15: This is different from the symmet-

ric double edge of Example 2.2.4, since

here the vertices remain fixed. The usual

action on the double edge is free, and

hence factorizable as well.

. In this situation, we have

Kα1,α2 =

{
1 : if α1 = α2
2 : if α1 ̸= α2.

A solution of Equation (5.10) is given by

C[i]
α1,α2 =

{
1 : if α1 = α2

1/
√

2 : if α1 ̸= α2.

Hence, (∆, G) is also factorizable.

In fact,we are not aware of any non-factorizable (Ω, G) structures, leading
to the following open question.

Question 5.2.1

Are there non-factorizable (Ω, G) structures?

We are now ready to present the rank inequalities.

Proposition 5.2.2 (Rank inequalities)

Let p ∈ P .

(i) rank(Ω,G)(p) ⩽ sep-rank(Ω,G)(p) for any separable cone.

(ii) rank(Ω,G)(p) ⩽ sos-rank(Ω,G)(p)2
.

(iii) If (Ω, G) is factorizable, then

sos-rank(Ω,G)(p) ⩽ sep-rank(Ω,G)(p)

for the separable cone over local sos polynomials.

Proof. (i) Every separable decomposition is an unconstrained decomposi-

tion. (ii) Let q = (qk)k∈S be a G-invariant sos-decomposition of p, with

an (Ω, G)-decomposition

qk =
∑

α∈I F̃

q[1]k1,α|1
(x[1]) · · · q[n]kn ,α|n

(x[n])
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for each k ∈ S = S1 × · · · × Sn. Defining Î := I × I and

p[i]β,β′ :=
∑
k∈Si

q[i]k,β(x
[i]) · q[i]k,β′(x

[i])

we obtain a valid (Ω, G)-decomposition of p, with

rank(Ω,G)(p) ⩽ |Î | = |I|2,

namely

p =
∑
k∈S

∑
α,α′∈I F̃

q[1]k1,α|1
(x[1]) · q[1]k1,α′|1

(x[1]) · · · q[n]kn ,α|n
(x[n]) · q[n]kn ,α′|n

(x[n])

=
∑

(α,α′)∈Î F̃

p[1]
α|1 ,α′|1

(x[1]) · · · p[n]
α|n ,α′|n

(x[n]).

(iii). Let p[i]β ∈ C [i]
sos for β ∈ I F̃i and i ∈ [n] be local polynomials from a

separable (Ω, G)-decomposition of p. So there exist sos decompositions

p[i]β =
N∑

k=1

(
τ
[i]
k,β

)2

with τ
[i]
k,β ∈ R[x[i]] (and we can clearly use the same sum length N for all

i, β). We can in addition assume without loss of generality that

τ
[gi]
k,g β(x

[i]) = τ
[i]
k,β(x

[i])

holds for all i, β, k and g. Indeed, just consider the action of G on⋃
i∈[n]

{i} × I F̃i

given by g · (i, β) := (gi, gβ), and fix for every orbit precisely one

representative (i1, β1), . . . , (iM, βM). Then choose one sos decomposition

for each p[iℓ ]βℓ
and use the same along its orbit. This works since we have

p[gi]
g β (x[i]) = p[i]β (x[i]) for all i, β by assumption.

Now since (Ω, G) is factorizable, we can choose some positive and

G-invariant solution

(
C[i]

β

)
β,i

of Equation (5.10). Using the above repre-

sentatives (iℓ, βℓ) again, we now define

q[i]
(ℓ,k),β :=


√

C[i]
β · τ

[i]
k,β(x

[i]) : if ∃g ∈ G : (i, β) = (giℓ, gβℓ)

0 : else

where ℓ ∈ {1, . . . , M}, k ∈ {1, . . . , N} and β ∈ I F̃i . By definition, we

have

q[gi]
(ℓ,k),g β

(x[i]) = q[i]
(ℓ,k),β(x

[i]),
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and hence

q((ℓ1,k1),...,(ℓn ,kn)) :=
∑

α∈I F̃

q[1]
(ℓ1,k1),α|1

(x[1]) · · · q[n]
(ℓn ,kn),α|n

(x[n])

is a valid (Ω, G)-decomposition of the G-invariant family

q :=
(

q((ℓ1,k1),...,(ℓn ,kn))

)
(ℓi ,ki)∈Si

where Si = {1, . . . , M} × {1, . . . , N}. This family is also an sos decom-

position of p, since∑
∀i: (ℓi ,ki)∈Si

q2
((ℓ1,k1),...,(ℓn ,kn))

=
∑

α∈I F̃

Kα · C[1]
α|1

· · ·C[n]
α|n

· p[1]α|1
(x[1]) · · · p[n]α|n

(x[n]) = p.

Here we have used Equation (5.10), as well as G-invariance of the C[i]
β

and the τ
[i]
k,β.

5.2.2 An upper bound for the separable rank

We now provide an upper bound for the separable (Ω, G)-rank with

respect to the number of local variables mi and the polynomial’s local

degree. For simplicity, we again assume that all local polynomial spaces

use the same number of variables, m := mi = mj for i, j ∈ [n]. For p ∈ P
recall that the local degree of p, denoted degloc(p), is the smallest integer

d ∈ N such that

p ∈ R[x[1]]d ⊗ · · · ⊗ R[x[n]]d

where R[x]d is the space of polynomials in variables x of degree at most

d.

Proposition 5.2.3 (Upper bound for separable rank)

Let p ∈ P be separable and G-invariant, and let Ω be a connected

WSC with a free group action G. Then

sep-rank(Ω,G)(p) ⩽ |G| ·
(

degloc(p) + m
degloc(p)

)n

for any separable cone.

Proof. Let d = degloc(p). Then p ∈ R[x[1]]d ⊗ · · · ⊗ R[x[n]]d. Since

dim
(

R[x[i]]d
)
=

(
d + m

d

)
for all i ∈ [n], p is a conic combination of at most (d+m

d )
n
elementary

products with factors from the local cones by Carathéodory’s Theorem
16
. 16: See for example [6, Theorem 2.3].



96 5 Polynomial decompositions inspired by tensors

From the proof of Theorem 5.1.1, we obtain

sep-rankΩ(p) ⩽
(

d + m
d

)n
.

The result now follows from Corollary 5.1.9.

5.2.3 Separations

Here we will show separations between the polynomial ranks, which we

will define shortly. Throughout this section we will consider separable

decompositions only with respect to the local sos cones.

We know from Proposition 5.2.2 that the separable rank upper bounds

both the rank and sos-rank. Here we will show that a reverse inequality

is impossible: there are no functions f , g : N → N such that

sep-rankΛ2
(p) ⩽ f

(
sos-rankΛ2(p)

)
and

sos-rankΛ2(p) ⩽ g
(

rankΛ2(p)
)

for all m ∈ N and polynomials p ∈ R[x[1], x[2]]with x[i] := (x[i]1 , . . . , x[i]m ).
This is called a separation between sos-rank and sep-rank, or rank and

sos-rank, respectively. We prove the separations by a reduction to matrix

factorizations of entrywise nonnegative matrices, which themselves

exhibit separations [49, 60].

For this reason, we focus on the subspace of n-quadratic forms in P
and relate it with tensors. For |T⟩ ∈ Rm ⊗ · · · ⊗ Rm

we define the

polynomial

pT :=
m∑

j1,...,jn=1

⟨j1, . . . , jn | T⟩
(

x[1]j1

)2
· · ·
(

x[n]jn

)2
∈ P . (5.11)

There is a one-to-one correspondence between the tensor |T⟩ and the poly-

nomial pT . In addition, entrywise nonnegativity of |T⟩ fully characterizes

the nonnegativity and the sos property of pT :

Lemma 5.2.4 (Correspondence between tensors and polynomials)

The map

Rm ⊗ · · · ⊗ Rm → P
|T⟩ 7→ pT

(where pT is given in Equation (5.11)) is linear and injective. In

addition, the following statements are equivalent:

(i) |T⟩ is entrywise nonnegative.

(ii) pT is a sos.

(iii) pT is globally nonnegative
17

17: That is,

pT(x[1], . . . , x[n]) ⩾ 0

for x[i] ∈ Rm
.

.

Proof. Linearity and injectivity are immediate (each entry of |T⟩ clearly
gives rise to a different monomial).
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The implications (i) =⇒ (ii) =⇒ (iii) are clear, since a nonnegative tensor

T generates a sum of squares, since every sum of squares is globally

nonnegative. For (iii) =⇒ (i) assume that |T⟩ is not nonnegative, so there

exist j1, . . . , jn such that ⟨j1, . . . , jn | T⟩ < 0. Then

p(ej1 , . . . , ejn) = ⟨j1, . . . , jn | T⟩ < 0,

where ej is the jth standard vector. This shows that p is not nonnegative.

In order to “borrow” the separations of tensor decompositions to derive

separations of polynomial decompositions, we now show that the differ-

ent notions of positive ranks for tensors correspond to the polynomial The psd (Ω, G)-rank and the nonneg-

ative (Ω, G)-rank are defined in Sec-

tion 2.3.

ranks.

Proposition 5.2.5 (Rank correspondence between tensors and poly-

nomials)

Let |T⟩ ∈ Rm ⊗ · · · ⊗ Rm
and the polynomial pT be given by

Equation (5.11).

(i) rank(Ω,G)(T) = rank(Ω,G)(pT).
(ii) nn-rank(Ω,G)(T) = sep-rank(Ω,G)(pT).
(iii) psd-rank(Ω,G)(T) ⩽ sos-rank(Ω,G)(pT)

with equality if G acts freely on [n].

Proof. (i). Let the families

(
|T[i]

β ⟩
)

β∈I F̃i
provide an (Ω, G)-decomposition

of |T⟩ as in Definition 2.3.1. Now consider the families

P [i] :=
(

Ψ
T[i]

β

(x[i])
)

β∈I F̃i

where for a vector |V⟩ ∈ Rm
the Ψ notation indicates

ΨV(x) :=
m∑

j=1

⟨j |V⟩ x2
j .

It is immediate to see that these families provide an (Ω, G)-decomposition

of pT , using the same index set I .

Conversely, observe that every (Ω, G)-decomposition of pT consists

without loss of generality of local polynomials of the form

p[i]β =
m∑

j=1

⟨j | T[i]
β ⟩
(

x[i]j

)2

for certain |T[i]
β ⟩ ∈ Rm

. All other possible monomials will have to cancel

out in the total product and sum, and can therefore be omitted. Thus the

|T[i]
β ⟩ give rise to an (Ω, G)-decomposition of |T⟩, again with the same

index set I .
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Statement (ii) is proven exactly as (i), and using the fact that the local

polynomials of an sos (Ω, G)-decomposition of pT must all be of degree

2, and thus have nonnegative coefficients at all the

(
x[i]j

)2
.

For (iii) we start with an sos (Ω, G)-decomposition of pT , where every

local polynomial q[i]k,β can (for degree reasons) be assumed to be of the

form

q[i]k,β =
m∑

j=1

(
B[i]

j

)
k,β

x[i]j .

Now the matrices

E[i]
j :=

(
B[i]

j

)t (
B[i]

j

)
⩾ 0

give rise to a psd (Ω, G)-decomposition of |T⟩ of the same rank as the

initial decomposition. This can easily be seen by computing the coefficient

of pT at each monomial (x[1]j1
)2 · · · (x[n]jn )2

, and checking that it arises

from the sos (Ω, G)-decomposition.

For the reverse inequality, we assume that G acts freely on [n]. We start

with a psd (Ω, G)-decomposition of T, i.e.

⟨j1, . . . , jn | T⟩ =
∑

α,α′∈I F̃

(
E[1]

j1

)
α|1 ,α′|1

· · ·
(

E[n]
jn

)
α|n ,α′|n

where all E[i]
j are psd. Decompose E[i]

j =
(

B[i]
j

)t (
B[i]

j

)
with the addi-

tional constraint that (
B[gi]

j

)
k,g β

=
(

B[i]
j

)
k,β

.

Since G acts freely on [n], we can just choose certain B[i]
j and define the

B[gi]
j along the orbit by that formula. Now defining

q[i]
(j,k),β :=

(
B̃[i]

j

)
k,β

x[i]j

leads to a sos (Ω, G)-decomposition with sos-rank(Ω,G)(pT) ⩽ |I|.

The proof of Proposition 5.2.5 (iii) does not work in reverse direction if we

do not assume that G acts freely on [n]. Assume there exists e ̸= g ∈ G
and i ∈ [n] such that gi = i. Then, the construction into a symmetric

factorization B̃[i]
j implies that

(
E[gi]

j

)
g β,β′

=
(

B̃[gi]
j

)t

g β,−

(
B̃[gi]

j

)
−,β′

=
(

B̃[i]
j

)t

β,−

(
B̃[i]

j

)
−,β′

=
(

E[i]
j

)
β,β′

which is stronger than the symmetry of E[i]
j given in a psd (Ω, G)-

decomposition.

We now show that there is a separation between the ranks already for

decompositions on the single edge.
18

18: Note that in the following corollary

pm is a polynomial on the single edge.
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Corollary 5.2.6 (Rank separations on the single edge)

Let pm ∈ R[x[1]1 , . . . , x[1]m , x[2]1 , . . . , x[2]m ].

(i) There exists a sequence of polynomials (pm)m∈N such that

rankΛ2(pm) = 3, sos-rankΛ2(pm) = 2

and

log2(m) ⩽ sep-rankΛ2
(pm) < ∞

(ii) There exists a sequence of polynomials (pm)m∈N such that

rankΛ2(pm) = 3 and
19

19: Of course we have that

sos-rankΛ2 (pm) < ∞.
lim

m→∞
sos-rankΛ2(pm) = ∞

Proof. (i). The Euclidean distance matrix Mm ∈ Matm(R) ∼= Rm ⊗ Rm

which is defined as

(Mm)i,j = (i − j)2

satisfies
20

20: See [49, Example 5.17] for details.

rankΛ2(Mm) = 3, psd-rankΛ2
(Mm) = 2,

and

nn-rankΛ2(Mm) ⩾ log2(m)

since all explicit examples are given as a realmatrix factorization.Defining

pm := pMm and using Proposition 5.2.5 shows the statement.

(ii) is similar to (i), this time using the slack matrix of an m-gon for every

m ∈ N.
21

21: We refer to [49, Example 5.14] for the

definition of a Slack matrix of a polyhe-

dron.

These statements imply that there cannot exist functions f , g : N → N

such that

sep-rankΛ2
(p) ⩽ f

(
sos-rankΛ2(p)

)
and

sos-rankΛ2(p) ⩽ g
(

rankΛ2(p)
)

holds for all m ∈ N and all polynomials p ∈ R[x[1], x[2]] with x[i] :=
(x[i]1 , . . . , x[i]m ). This also holds true for polynomials of bounded degree,

since deg(pm) = 4 in the above construction.

This immediately leads to the question of whether there are separations

between the ranks of polynomials with a bounded number of variables

and no bound on the degree. In this setting there does not exist a one-to-

one correspondence between polynomials and Gram matrices (as that

of Example 5.1.9). We believe that separations will again appear in the

simplest setting and leave this question as a conjecture.

Conjecture 5.2.7

There do not exist functions f , g, h : N → N such that for all

p ∈ R[x, y] (in particular, independently of the degree of p)

(i) sep-rankΛ2
(p) ⩽ f (rankΛ2(p))
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(ii) sep-rankΛ2
(p) ⩽ g(sos-rankΛ2(p))

(iii) sos-rankΛ2(p) ⩽ h(rankΛ2(p))

where p is separable in (i) and (ii), and a sum of squares in (iii). The

separable rank is again meant with respect to the local sos-cones.

5.3 Conclusions and outlook

In summary, we have defined and studied several decompositions of

multivariate polynomials into local polynomials, each containing only

a subset of variables. The variables are divided into blocks, and each

local polynomial uses only one block. We describe a decomposition with

WSC Ω, whose vertices describe the individual blocks, and facets the

summation indices. For polynomials invariant under the permutation

of blocks of variables, we have defined and studied an invariant decom-

position. We have also defined an invariant decomposition with local

positivity conditions, specifically, with the separable and sum of squares

condition.

Specifically, we have defined invariant polynomial decompositions (Def-

inition 5.1.1) and shown that every G-invariant polynomial admits an

(Ω, G)-decomposition if G acts freely on Ω (Theorem 5.1.2). Moreover,

if G is a blending group action, every G-invariant polynomial can be

written as a difference of two (Ω, G)-decompositions (Theorem 5.1.7). We

have also defined the separable (Ω, G)-decomposition (Definition 5.1.2),

and sum of squares (Ω, G)-decomposition (Definition 5.1.3), and have

shown that they exist if G acts freely on Ω (Theorem 5.1.8 and Corollary

5.1.12, respectively).

In addition, we have shown that the (Ω, G)-rank of a polynomial can be

upper bounded in terms of its separable and sos rank, and that the sos

rank can often be upper bounded by its separable rank (Proposition 5.2.2).

In the reverse direction such inequalities cannot exist, since there exists a

sequence of polynomials with constant (Ω, G)-rank and a diverging sos

or separable rank (Corollary 5.2.6).

This work has left two open questions:

▶ Do the rank separations also hold with respect to a bounded

number of variables but unbounded degree (Conjecture 5.2.7), and

▶ Does there exist non-factorizable (Ω, G) structures (Question 5.2.1)?

A more general open question concerns the full characterization of the

existence of invariant polynomial decompositions, as freeness of the

group action only provides a sufficient condition. Our investigations

indicate that it may also be necessary, but we were not able to prove it.
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semi-algebraic geometry 6

Computation is a concept that has existed in some form for a long period

of time. In its usual interpretation, this term refers to the process of

producing an output from a set of inputs after applying a finite number of

standard operations, for example, addition or multiplication of numbers.

In the early 20th century, many models of computation were formally

introduced, leading to the birth of computational complexity theory.

6.1 Basics in computational

complexity . . . . . . . . . . 104

6.1.1 Turing machines . . . . . . . .105

6.1.2 Decision problems and

computability . . . . . . . . . . 106

6.1.3 Computational complexity

classes . . . . . . . . . . . . . . 108

6.2 Computational aspects in

semi-algebraic geometry . 113

6.2.1 The Tarski–Seidenberg

theorem . . . . . . . . . . . . . 114

6.2.2 Hilbert’s basis theorem . . . . 117

In computational complexity theory, computational procedures are mod-

eled via Turing machines. These machines reflect our intuitive notion

of computation, namely a fixed number of basic operations performed

on an input with the possibility of writing down intermediate results

on a scratchpad. The basic operations are modeled by a finite table

of transitions and the scratch pad by an infinitely long tape. Despite

their simplicity, Turing machines embody the entirety of computational

capabilities that are achievable by nature.

Turing machines have been useful to classify the resource usage of differ-

ent computational problems. This includes the following distinctions of

problems:

▶ Determining whether problems are decidable or undecidable —

i.e., whether a given problem can be solved within a finite amount

of time.

▶ Identifying whether a problem admits an efficient solution by a

Turing machine — i.e., whether the computation time scales

reasonably with the size of the input.

In Section 6.1, we introduce the basics of computational complexity,

providing a rigorous framework to answer these questions. In this

section, we introduce the concept of (non-deterministic) Turing machines

alongside the notions of (un-)decidability. Moreover, we survey well-

known examples of computational complexity classes such as polynomial-

time problems, non-deterministic polynomial-time problems as well

as recursively enumerable problems. We also review the concept of

hardness in computational complexity to lower bound computational

complexities.

In Section 6.2, we present tools from (semi-)algebraic geometry that

give rise to algorithms for problems in quantum information. Many

problems in quantum information involve an infinite amount of polyno-

mial equations or a search over an uncountable amount of values. This

includes, for example, checking membership in the set of separable states

or block-positive matrices. Semi-algebraic geometry (i.e. the study of

systems of polynomial inequalities) provides an algorithmic approach

to solve these problems in finite time. Specifically, the Tarksi–Seidenberg
theorem and Hilbert’s basis theorem allow us to construct algorithms to

solve problems that seem naively not decidable in finite time.

These tools will then be applied in the two remaining chapters of this

part:
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▶ In Chapter 7, we prove that the moment membership problem can

bedecidable or undecidable for certain instance sets. Specifically,we

consider the following question: Given a matrix A, check whether

tr(An) ∈ P

for every n ∈ N for specific sets P . This problem entails verifying

tr(An) ∈ P for the countably many cases n ∈ N. Consequently, no

finite decision procedure follows directly from the problem’s defi-

nition. Nonetheless, leveraging tools from semi-algebraic geometry,

we establish that this problem is decidable for certain classes of

matrices A, such as unitary matrices. Conversely, we prove that the

same problem becomes undecidable when A is a matrix over a ring,

such as the ring of commutative or non-commutative polynomials.

▶ In Chapter 8, we introduce the notion of a bounded version of a

decision problem. Many undecidable problems in physics, mathe-

matics, and computer science share a common feature: They consist

of infinitely many statements over an unbounded parameter (sim-

ilar to the moment membership problem). We demonstrate that

bounding this parameter makes the problems decidable; however,

they remain NP-hard in most situations.

6.1 Basics in computational complexity

Computational complexity provides a formal framework to understand

the computational resources required to solve problems. At its core are

Turing machines, which embody our intuitive notion of computation:

Performing basic operations while utilizing a scratch pad to record

intermediate results. The adoption of Turing machines as a model of

computations stems from the Church–Turing thesis;

Every physically realizable computation can be executed by a Turing
machine.

This thesis is motivated by the equivalence to many other models of

computation, namely λ-calculus, RAMmachines, or cellular automata.

All of these models were found to be equivalent, i.e. if a function is

computable within one model, then it is also computable within every

other of the mentioned models [2].

Turing machines serve as representatives for real-world computation.

Furthermore, this model gives rise to several fundamental concepts,

including efficient computation and problems that are efficiently verifiable

but not necessarily efficiently disprovable.

We shall present the notion of a Turing machine. Moreover, we will review

the concept of decision problems and their computational complexity.

Specifically, we will present several families of complexity classes, in-

cluding the class of recursively enumerable problems, and the class of

non-deterministic polynomial time problems.

For a more detailed introduction to computational complexity theory, we

refer to the textbooks by Arora and Barak [2], by Papadimitriou [94], by

Sipser [115], or by Widgerson [128].
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6.1.1 Turing machines

In the following, we introduce the notion of a Turing machine, which

is the most commonly used model of computation. Turing machines

reflect the longheld intuition of computation: Certain mechanical rules

are applied to manipulate numbers, and it is allowed to use a notebook

for intermediate results. Although introduced at the beginning of the

20th century, Turing machines can be understood as a model of modern

computers, with the difference that Turing machines have no built-in

upper bound in the memory size.

A Turing machine consists of the following three parts (illustrated in

Figure 6.1):

▶ A tape divided into individual cells arranged adjacently. Each cell

holds a symbol from a finite set Σ, the tape alphabet. The tape

is assumed to be infinitely extendable in both the right and left

direction, serving as the computational scratchpad.

▶ A head that can read and write on the tape cells. It can move to the

right or to the left, one step at a time.

▶ A finite program equipped with an internal state register comprising

finitely many states Q. This program can interact with the head.

Conceptually, it is a finite set of instructions that depend on the

internal state and on the tape entry. The instructions involve chang-

ing the internal state, writing on the tape and moving the head

to the left or to the right. For this reason, the set of instructions

defines a function

δ : Q× Σ → Q× Σ × {L, R}, (6.1)

where Σ is the tape alphabet andQ is the set of states.
1
For instance, 1: Both, Σ and Q are finite sets. This

implies that δ can be represented in a

finite way.

δ(q1, s1) = (q2, s2, L) indicates that if the head reads symbol s1
while in state q1, the state transitions to q2, the head overwrites s1
with s2, and moves leftward.

Head

Finite Program

b b a c · · ·· · ·

Figure 6.1: Illustration of a Turing ma-

chine consisting of an infinite tape, a

head, and a finite program. The head

can read and write on the tape and move

(depending on the instructions of the pro-

gram). The finite program is modeled by

a finite set of states and a transition func-

tion introduced in Equation (6.1).

A configuration of a Turing machine, defined by a state and a tape entry,

is called an instantaneous description of the Turing machine. Consequently,

the transition function δ can be viewed as a mapping between various

configurations of the Turing machine.

A computation step of the Turing machine consists of the head reading

the current tape cell entry, resulting in a configuration (q, s), and then

applying δ to (q, s). In the new configuration obtained from δ, the Turing

machine updates its internal state, inscribes the new symbol onto the
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tape, and shifts its head one step left or right. Thus, each computation

step corresponds to obtaining one instantaneous description.

Turing machines encapsulate the full power of computation. In other

words, adding features does not increase the computational power. For

example, adding a second tape, a random access memory, letting δ be

non-deterministic, or even a quantum device does not change the set

of problems that are computable with Turing machines (see [2, Section

1.2.2]).

Accepting and rejecting inputs

All Turing machines considered three states of particular importance:

the initial state qi, the accept state qa, and the reject state qr. The Turing

machine starts with the initial state, and the accept/reject states aremeant

to partition inputs into two classes. For this purpose, we assume that the

Turing machine does nothing after reaching qa or qr.

We define a Turing machine T to halt on input x —a string initially written

on the tape— if T reaches either the state qa or the state qr after a finite

number of computation steps, starting from the initial state qi. If T arrives

at qa, we say that T accepts x (denoted T(x) = 1), whereas if it reaches

qr, we say that T rejects x (denoted T(x) = 0).

Non-deterministic Turing machines

There are extensions of Turing machines that are computationally more

efficient than standard Turing machines, yet their implementation is

not physical. One example is the so-called non-deterministic Turing ma-
chine. This allow for non-deterministic transitions. Specifically, for a

non-deterministic Turing machine, the transition

δ : Q× Σ → Q× Σ × {L, R}

can be multi-valued, meaning that δ(q, x) can have multiple outcomes.

While deterministic Turing machines follow a single computational path,

non-deterministic Turing machines can explore a tree of computational

paths (refer to Figure 6.2), due to themultiple outcomes of each transition.

Non-deterministic Turing machines are believed to be more efficient

than ordinary deterministic ones; however, non-deterministic transitions

cannot be implemented physically. Another extension with a similar

behavior is the Turing machine with an additional quantum device (see

[2, Chapter 20]). These machines are also believed to be more efficient

than standard Turing machines, however, the set of computable problems

remains the same for all these models.

Deterministic

Turing machine

Non-deterministic

Turing machine

Time

Figure 6.2: (Deterministic) Turing ma-

chines vs. non-deterministic Turing ma-

chines. Every vertex represents one in-

stantaneous description and every edge a

computational step. While the determin-

istic one has only one computation path

(since δ is a function), the computation

paths of a non-deterministic one form a

tree. In this example every transition has

precisely two outcomes, and one exam-

ple of a computation path is highlighted

in orange. The number of distinct compu-

tation paths increases exponentially in

the number of computation steps. Note

that the computation can halt on certain

paths earlier than on others.

6.1.2 Decision problems and computability

In the following, we use the concept of Turing machines to present the

notion of computable functions and decision problems.
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For a given finite alphabet Σ, we define the Kleene star on Σ as

Σ∗ := {c1c2 . . . cn : n ∈ N, ci ∈ Σ},

i.e. the set of strings generated by characters from Σ. Boolean functions

f : Σ∗ → {0, 1}

give rise to the notion of a decision problem. Mapping a string to 1 is

interpreted as the string being accepted, and mapping it to 0 means the

string being rejected. In essence, a decision problem divides the set of

all strings Σ∗
into two categories: yes-instances, where f (x) = 1, and

no-instances, where f (x) = 0.

Alternatively, decision problems can also be defined via a language that is
defined as

L := {x ∈ Σ∗ : f (x) = 1} ⊆ Σ∗.

Throughout this thesis, we will use the terms language and (decision)

problem interchangeably.

In practice, we often encounter functions whose domain is not inherently

defined by a set of strings, like over the natural numbers f : N → {0, 1}.
These can still be understood as decision problems by choosing a proper

encoding of the domain. For example, the set N can be encoded with a

binary encoding {0, 1}∗ by associating every string (s0, . . . , sn) ∈ {0, 1}∗
with the natural number

a =
n∑

k=0

sk2k.

Similar encodings exist for Z, Q, or Mats(Q); however, sets like R or C

do not admit such a finite encoding, as they are uncountable. For this

purpose, instance sets are always restricted to sets that admit a finite

encoding.
2

2: A further example of a set that attains

a finite description, are the algebraic num-
bers in C, i.e. elements that arise as roots

of a polynomial. A possible finite repre-

sentation can be constructed by using a

polynomial whose root is the element of

interest.

A further encodable set is the set of all Turing machines T . Every Turing

machine can be represented in a finite way via its finite state set, its

finite tape alphabet and its transition function δ which consists of a finite

number of instructions.

Let us now introduce one famous decision problem on this instance set,

the halting problem. We denote its language by Halt.

Example 6.1.1 (The halting problem)

The halting problem Halt is a decision problem on T × Σ∗
defined as

⟨T, x⟩ ∈ Halt ⇐⇒ T halts on input x.

One of the central questions in computational complexity is whether

decision problems are computable or not. In essence: does there exist a

procedure to compute a function f : Σ∗ → {0, 1}? A decision problem

given by a language L is called decidable (in short L ∈ R for recursive), if

there exists a Turing machine T such that

x ∈ L ⇐⇒ T(x) = 1.
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In plain words, T halts on every input x and accepts x if and only if x ∈ L.
This means that there is a finite procedure that decides whether f (x) = 0
or f (x) = 1 reaching the accept or the reject state after finitely many

computation steps. While there are many problems that can be shown

to be decidable by giving an explicit description of such a computation

procedure, there are many more problems which are undecidable.3 One3: This follows from the fact that there

are uncountably many functions

f : N → {0, 1},

while there are only countably many Tur-

ing machines which model decidable

functions.

such problem is the halting problem [123].

Theorem 6.1.1

The Halting problem Halt is undecidable.

This statement is proven via contradiction: If there exists a procedure that

decides Halt, this implies a logical contradiction. For a comprehensive

proof, we refer to [2, Section 1.4].

Analogous to decision problems (i.e., Boolean functions yielding two

outcomes), there exists a concept of computability for functions

g : Σ∗ → Σ∗.

We say that g is computable if there exists a Turing machine T which halts

on every input x and the outcome of the function

y = f (x)

is finally written on the tape. This notion will be an important ingredient

for reductions in Definition 6.1.4.

6.1.3 Computational complexity classes

Thus far, we have observed that decision problems fall into the categories

of decidable or undecidable. However, the decidable nature of a problem

does not guarantee practical solvability— that is, the ability to solve

the problem efficiently or within a reasonable timeframe, in practice. It

is plausible for a problem to demand an exorbitantly large number of

computation steps, even for relatively small inputs. For this purpose,

there exist further complexity classes that capture efficiently solvable

problems, namely the class of polynomial-time problems, as well as

efficiently verifiable problems (so-called NP-problems).

Polynomial-time problems

This definition is meant to reflect that the

computation time is reasonably small for

every input. However, note that p can be

arbitrary in this definition, including also

Turing machines whose runtime scales

for example with |x|1000
. We refer to [2,

Section 1.5] for a detailed discussion on

the philosophical importance and criti-

cism on this definition.

We say that a Turing machine T is polynomial-time if there exists a

polynomial p : N → N such that for every input x ∈ Σ∗
, T halts within

p(|x|) steps, where |x| denotes the length of the string.

Definition 6.1.1 (Polynomial-time decision problems)

Let L be a language. We say that L is polynomial-time decidable (in

short L ∈ P) if there exists a polynomial-time Turing machine T such

that

x ∈ L ⇐⇒ T(x) = 1.
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Many efficiently solvable problems are in P, for example, multiplying

matrices or finding the shortest path between two vertices on a graph.

Most of these problems have in common that the exponent in the

polynomial p is reasonably small, which makes them also efficiently

solvable in practice.

Non-deterministic polynomial-time problems

When solving a puzzle, it makes a huge difference in solving this puzzle

from scratch versus verifying if a given solution is correct. In physics

and mathematics, many problems share a similar behavior. We now

review the complexity class NP (and subsequently coNP), which precisely

captures this.

Definition 6.1.2

Let L be a language. We say the L is non-deterministic polynomial-

time (in short L ∈ NP) if there exists a polynomial-time Turing

machine T and a polynomial p such that

x ∈ L ⇐⇒ ∃y ∈ Σ∗ : |y| ⩽ p(|x|) : T(⟨x, y⟩) = 1

Here, ⟨x, y⟩ means that the strings x and y are merged with each other,

separated through a colon.

In simple terms, if a problem L is in the complexity class NP, it means

that for every instance where the answer is yes, there exists a short, easily

checkable proof, also called a certificate. This certificate provides evidence

that the instance indeed belongs to the set of yes-instances. Think of

it like having the solution to a puzzle— if you have the solution, it is

quick to check that it is correct. However, if the instance is a no-instance,

there is no straightforward way to certify it. In other words, there is no

quick, easily verifiable proof that the instance does not belong to the set

of yes-instances. This mirrors the situation where verifying that a puzzle

has no valid solution is challenging.

When the complement of a language L, defined as Lc := Σ∗ \ L, belongs
to the class NP, we say that L ∈ coNP. This complexity class operates

similarly to NP, but it focuses on verifying no-instances, contrasting

with NP which verifies yes-instances. Namely, L ∈ coNP if there exists a

polynomial-time Turing machine T and a polynomial p such that

x ∈ L ⇐⇒ ∀y ∈ Σ∗ : |y| ⩽ p(|x|) : T(⟨x, y⟩) = 1. (6.2)

Since yes- and no-instances are asymmetric in the definition of NP, the
complexity class coNP might be very different from NP.

There are many problems in NP that are unknown to be in P. Examples

include the 3-satisfiability problem SAT, graph problems like MaxCut,

and the 3-coloring problem (see Figure 6.3).We refer to [54] for details and

many more examples of such problems. Despite extensive investigation,

the existence of efficient algorithms for these problems remains uncertain.

In fact, the conjecture P ̸= NP is one of the most significant unsolved

problems in computer science.

No-instance

Yes-instance

(Peterson graph)

Figure 6.3: The 3-coloring problem. Can

the vertices of a graph be colored with

three colors such that its adjacent ver-

tices have a different color? These figures

show a yes-instance and a no-instance.

The fully connected graph with four ver-

tices cannot be 3-colored since the up-

per left vertex does not admit any color

that is not used already for an adjacent

vertex. The 3-coloring problem is an NP-

complete decision problem.
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Figure 6.4: The complexity classes intro-

duced in this chapter.R is the set of decid-

able languages that corresponds to the

intersection of RE and coRE. RE-hard
and coRE-hardproblems are harder than

all RE and coRE problems. A subset

of decidable problems are P, NP, and
coNP problems. In contrast to R, the set

P might be a strict subset of NP ∩ coNP.

P

NP

NP-hard coNP-hard

coNP

R

RE

RE-hard coRE-hard

coRE

An example of an NP-problem is the non-deterministic bounded Halting

problem.

Example 6.1.2

The non-deterministic bounded halting problem BNHalt is a decision

problem on TN × N defined as

⟨T, n⟩ ∈ BNHalt ⇐⇒ T halts on the empty input in n steps.

Here, TN is the set of all non-deterministic Turing machines.

BNHalt is in NP because it is easy to verify if T halts within n steps

by giving the computational path as a certificate. However, it is hard to

verify that T does not halt within n steps since one has to check that it

does not halt on any of the exponentially many computational paths (see

Figure 6.2).

Semi-decidable problems

We now present an analog notion to NP at the level of decidable problems,

namely the set of recursively enumerable languages.

Definition 6.1.3 (Recursively enumerable)

A language L ⊆ Σ∗
is called recursively enumerable (in short L ∈ RE)

if there exists a Turing machine T such that

x ∈ L ⇐⇒ ∃y ∈ Σ∗ : T (⟨x, y⟩) = 1.

Moreover, L is called co-recursively enumerable (in short L ∈ coRE) if
Lc ∈ RE, i.e. there exists a Turing machine T′

such that

x ∈ L ⇐⇒ ∀y ∈ Σ∗ : T′ (⟨x, y⟩) = 1.
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In simple terms, for a recursively enumerable language it is possible to

verify that x is a yes-instance by checking whether there exists a finite

certificate y that verifies x via the Turing machine T. However, certifying

that x /∈ L might not be possible in finite time, since one must check

whether none of the (infinitely many) certificates verifies x. For this

purpose, RE-problems are called semi-decidable, since they can only verify

one possibility (namely x ∈ L) in finite time.

The halting problem Halt is an example that is semi-decidable, but not

decidable. If ⟨T, x⟩ is a yes-instance of Halt, i.e. T halts on x, then there

exists a finite number n ∈ N such that T halts on x within n computation

steps. Note that the number n can be arbitrarily large (independent of

|x|). Using the halting time n as a certificate shows that Halt ∈ RE since

checking that T halts on x within n steps can be done in finite time via

using a universal Turing machine that simulates T.4 4: We refer to [2, Section 1.3] for an elab-

orate discussion on the notion of a uni-

versal Turing machine.The intersection of recursively enumerable (RE) and co-recursively enu-

merable (coRE) languages coincides with the set of decidable languages,

denoted as R, i.e.
R = RE ∩ coRE.

For a language L ∈ RE, there is a Turing machine T1 such that

x ∈ L ⇐⇒ ∃y ∈ Σ∗ : T1 (⟨x, y⟩) = 1.

Similarly, since L ∈ coRE, there is a Turing machine T2 such that

x /∈ L ⇐⇒ ∃y ∈ Σ∗ : T2 (⟨x, y⟩) = 1.

Enumerating among all strings y ∈ Σ∗
and letting T1 and T2 run in

parallel leads to an algorithm that halts for every input in finite time.

If x ∈ L, then T1 will accept in after finite iterations, if x /∈ L, then T2
accepts in finite time.

In Section 7.2.2, we use this observation to establish the decidability of

the moment membership problem. Specifically, we present an algorithm

to verify yes-instances in finite time and a method to verify no-instances

in finite time to construct an algorithm for the problem.

It is worth noting that a similar statement for NP and coNP is not true.

While we have

P ⊆ NP ∩ coNP,

the inclusion is believed to be strict.

Complexity lower bounds

Mathematics, physics, and computer science are full of problems that do

not seem to have a simple solution; it is even impossible to construct an

algorithm to solve them. For this purpose, it is relevant to classify the

hardness of a decision problem. Computational complexity relies on a

many conjectures, like the famous P ?
= NP. This exemplifies the difficulty

of proving that an NP-language L is not in P.5 5: If one finds a single example where

this is the case, this implies P ̸= NP.

Although there is no immediate hope to solve the above conjecture, there

are techniques to classify problems that are most probably not in P,
so-called NP-hard problems. If P ̸= NP, then the NP-hard problems are
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automatically not in P then these are the hardest problems among all

NP-problems.

We say that Problem B is harder than Problem A, if every algorithm for

Problem B automatically gives rise to an algorithm for Problem A. In

other words, we can embed the instances of the easier Problem A into

instances of Problem B. This is formalized by the notion of a reduction.

Definition 6.1.4

Let L1, L2 ⊆ Σ∗
be two languages. A reduction R : L1 → L2 is a

computable function

R : Σ∗ → Σ∗

that satisfies

x ∈ L1 ⇐⇒ R(x) ∈ L2.

If R is in addition computable in polynomial-time, then R is a

polynomial-time reduction.

Note that reductions are transitive, i.e. if there is a reductionR : L1 → L2
and a reduction Q : L2 → L3, then Q ◦R : L1 → L3 defines a reduction

from L1 to L3. For this reason, if there is a reduction L1 → L2, we will

denote this by L1 ⩽ L2. If the reduction L1 → L2 is in addition poly-time,

we denote this by L1 ⩽poly L2.

noyes

noyes

L2

L1

Figure 6.5: Illustration of a reduction

R : L1 → L2. The yes-instances in of

the first problem (i.e. elements of L1) are

mapped to the yes-instance of the second

problem (i.e. elements of L2), and no-

instance of the first problem are mapped

to no-instance of the second problem.

Therefore, the language L1 can be de-

cided with an algorithm for L2 via the

reduction.

This gives rise to the notion of NP-hard and RE-hard problems.

Definition 6.1.5

We call a problem L

▶ NP-hard (coNP-hard), if L′ ⩽poly L for every language L′ ∈ NP
(L′ ∈ coNP).

▶ RE-hard (coRE-hard), if L′ ⩽ L for every language L′ ∈ RE
(L′ ∈ coRE).

Note that NP-hardness and coNP-hardness require polynomial-time

reductions. This is essential because only polynomial-time computations

are negligible when considering problems in these complexity classes. If a

problem L is NP-hard and in addition in NP, the problem is NP-complete.

We use a similar convention for all other complexity classes.

Many graph problems are NP-complete, for example the MaxCut prob-

lem or the 3-coloring problem of graphs (see Figure 6.3). Also, the

non-deterministic halting problem BNHalt is NP-complete; we refer to

Section 8.2 for a proof of this statement. The halting problem Halt is an

example of an RE-complete problem:

Proposition 6.1.2

The Halting problem is RE-complete.

Proof. We start by showing that Halt ∈ RE-hard. Let T be a Turing

machine that decides the RE-language L. We construct a Turing machine

T′
from T such that

▶ If T accepts x, then T′
halts.
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▶ If T rejects x, then T′
loops.

This construction can be performed by adding a finite number of addi-

tional states in T′
, and shows that

x ∈ L ⇐⇒ ⟨T, x⟩ ∈ Halt.

Halt ∈ RE is clear by definition.

Note that not every undecidable (i.e. L /∈ R) language is RE-hard or

coRE-hard; however, Proposition 6.1.2 implies that every RE-hard (and

every coRE-hard) problem is also undecidable.

6.2 Computational aspects in semi-algebraic

geometry

Many decision problems in physics and mathematics reduce to verifying

whether a specific set of polynomial equations or inequalities is true. For

instance, determining whether a matrix A ∈ Mats(Q) is psd involves

checking the infinitely many polynomial inequalities of the form

⟨v| A |v⟩ ⩾ 0

for every vector |v⟩ ∈ Rs
. However, taking this definition literally as an

algorithm is impossible, as it would entail verifying uncountably many

inequalities — a task that cannot be accomplished in finite time.

A similar problem appears when classifying separable matrices. Amatrix

A ∈ Mats(C) ⊗ Mats(C) is separable if there exists r ∈ N and psd

matrices A[i]
α ∈ Psds(C) such that

A =
r∑

α=1

A[1]
α ⊗ A[2]

α .

Once again, deciding whether A is separable using this definition is

unfeasible as an algorithm due to the infinite range of quantified variables

involved.

In this chapter, we present two key results from (semi-)algebraic geometry

that can be leveraged to construct algorithms solving such problems.

▶ The Tarski–Seidenberg theorem offers a method for handling state-

ments involving polynomials and quantifiers over real numbers.

This theorem enables to develop algorithms for addressing a wide

range of problems in quantum information and beyond.

▶ Hilbert’s basis theorem shows that every set described by infinitely

many polynomial equations can be recovered by a finite subset of

these polynomials.
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6.2.1 The Tarski–Seidenberg theorem

In the following, we present the Tarski–Seidenberg theorem, which provides

insights into the structure of sets X of the following form:

x ∈ X ⊆ Rn ⇐⇒ ∃y ∈ Rm : p(x, y) ⩾ 0

where p : Rn × Rm → R is a polynomial with integer coefficients. Essen-

tially, these sets are projections of sets arising via a polynomial inequality.

Naively, checking membership (i.e. whether x ∈ X or x /∈ X) is not

doable in finite time, since one has to explore the space of parameters

y ∈ Rm
which can take uncountably many values.

However, the Tarski–Seidenberg theoremprovides an algorithm to decide

membership in X. Intuitively, the Tarski–Seidenberg theorem asserts that

sets like X are semi-algebraic, meaning they can be represented by a finite

number of polynomial inequalities without any quantifiers involved.

Furthermore, these polynomials can be derived in a computable way

from the original description of X. Verifying membership in X via these

finitely many polynomial inequalities can be achieved in finite time. We

first introduce the notion of a semi-algebraic set and then present the

statement of the Tarski–Seidenberg theorem with its implications.

Definition 6.2.1

A set S ⊆ Rn
is called semi-algebraic if there exist polynomials

p1, . . . , pk, qij : Rn → R

for every i, j ∈ {1, . . . k} such that

S =
k⋃

i=1

{
a ∈ Rn : pi(a) = 0, qi1(a) > 0, . . . , qik(a) > 0

}

An example of a semi-algebraic set is for instance{
(x1, x2) ∈ R2 : 1 < x2

1 + x2
2 ⩽ 4, x2 ⩾ x2

1 or x2
1 + x2

2 ⩽
1
2

}
which is illustrated in Figure 6.6.

Figure 6.6: Example of a semi-algebraic

set. Note that semi-algebraic sets do not

have to be open or closed. They also

do not have to be connected. Only the

boundary of these sets has to be de-

scribed via polynomials.

A semi-algebraic set can be expressed via polynomial inequalities of the

form:

p(a) ⩾ 0, p(a) > 0, p(a) = 0, p(a) < 0, p(a) ⩽ 0

as well as Boolean combinations thereof. Each of these conditions can be

transformed into the standard form of Definition 6.2.1.

Verifying membership in a semi-algebraic set is a straightforward task.

Let

S := {a ∈ Rn : q1(a) > 0, . . . , qk(a) > 0, p(a) = 0}.

To check whether a belongs to S, it suffices to check

p1(a) > 0, . . . , pk(a) > 0, q1(a) = 0, . . . , qs(a) = 0,

which can be done in finite time.
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Wenow consider themore complexmembership problem involving semi-

algebraic sets: Checking membership in projections of semi-algebraic

sets.

Problem 6.2.1 (Membership in projections of semi-algebraic sets)

Let S ⊆ Rn × Rm
be a semi-algebraic set (given by polynomials

p1, . . . , pk, qi1, . . . , qik). Moreover, let x := (x1, . . . , xn) ∈ Qn
. Decide

whether

x ∈ π1(S) := {a ∈ Rn : ∃y ∈ Rm : (a, y) ∈ S}.

Here π1 denotes the projection map on the first component of the space

Rn × Rm
. This problem is naively harder to decide since it involves a

quantifier. While sets like π1(S) may appear more general than semi-

algebraic sets, the Tarski–Seidenberg theorem reveals that π1(S) is also
semi-algebraic. Furthermore, this theorem yields an algorithm to decide

Problem 6.2.1.

Theorem 6.2.2 (Tarski–Seidenberg theorem)

Let S ⊆ Rn × Rm
be semi-algebraic and

π1 : Rn × Rm → Rn : (x, y) 7→ x

be the projection map. Then, the set π1(S) ⊆ Rn
is again semi-

algebraic. Moreover, the defining polynomials of π1(S) can be con-

structed explicitly.

We refer to [7, Section 2] or to [19] for a proof of this statement. Theo-

rem 6.2.2 immediately gives rise to the following corollary.

Corollary 6.2.3

Problem 6.2.1 is decidable.

It is worth noting that the polynomials describing π1(S) are generally
more complex than those describing S. Consequently, the computational

complexity of deciding membership in π1(S) surpasses that of NP.

Further note that a similar decision procedure applies to membership

problems involving the all-quantifier instead of the existential quantifier.

This follows from the fact that complements of semi-algebraic sets

are again semi-algebraic. Specifically, Theorem 6.2.2 implies that the

statement, given x ∈ Qn
, decide whether

∀y ∈ Qm : (x, y) ∈ S

is decidable.

We now present some examples where Theorem 6.2.2 can be applied.

Example 6.2.1 (The set of psd matrices is semi-algebraic)

A matrix A ∈ Mats(R) is psd, if it satisfies

∀ |v⟩ ∈ Rs : p(v, A) := ⟨v| A |v⟩ ⩾ 0,
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where p is a polynomial expression in the entries of |v⟩ and A.

By Theorem 6.2.2, it follows that the set of psd matrices Psds(R) is

semi-algebraic.

There are also explicit polynomial descriptions of Psds(R) known. For

example, the set of psd matrices can be characterized as follows [65,

Theorem 7.2.5]:

A ∈ Psds(R) ⇔ det(M) ⩾ 0 for the 2s − 1 principal minors M of A.
A principal minor M of a matrix A ∈
Mats(R) is, given a sequence

1 ⩽ i1 < i2 < . . . < ik ⩽ s,

the matrix

M =
(

Ai,j
)

i,j=i1 ,...,ik
.

There are 2s − 1 principal minors of an

s × s matrix.

Example 6.2.2 (The set of separable states is decidable)

A matrix A ∈ Mats(C)⊗Mats(C) is separable if there exists r ∈ N and

psd matrices A[i]
α ∈ Psds(C) such that

A =
r∑

α=1

A[1]
α ⊗ A[2]

α . (6.3)

Note that r can be upper bounded by s4
by the Carathéodory theorem

since the dimension of the matrix space is s4
and the set of separable

matrices is a convex cone generated by elementary tensors consisting of

psd matrices.

But this shows that Seps,s(C) ⊆ Mats(C)⊗2
is semi-algebraic by The-

orem 6.2.2 since it is a projection of a set generated by polynomial

equations (namely Equation (6.3)).
6

6: The definition of semi-algebraic sets

over C can be understood by taking real

and imaginary part separately, using

C ∼= R2
.

Note that no simple explicit polynomial description for separable

states is known. Consequently, applying the construction of the Tarski–

Seidenberg theorem to the set of separable states becomes necessary.

However, this approach is not efficient in practice.

Alternatively, one can employ hierarchies of semidefinite programs [44]

to determine membership in Seps,s(C).

Example 6.2.3 (Membership in the set of nonnegative polynomials is

decidable)

We now consider the set N ⊆ R[x1, . . . , xn]d defined as

N :=
{

p ∈ R[x1, . . . , xn]d : ∀a ∈ Rn : p(a) ⩾ 0
}

.

where R[x1, . . . , xn]d is the space of polynomials with degree at most d.
In the following, we associate R[x1, . . . , xn]d with the coordinate space

Rk
, i.e. every entry corresponds to a coefficient of a different monomial.

In this sense, N is a semi-algebraic, as it can be written as a quantified

formula with a polynomial inequality.

This implies that deciding whether p is nonnegative on Rn
is decidable.

Deciding statements in first-order logic

Theorem 6.2.2 allows us to even decide more general statements, more

precisely, statements in first-order logic. A statement φ in first-order logic

is defined by a set of polynomials p1, . . . , pn : Rn → R in n variables
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together with quantifiers on all variables, i.e.

φ := Q1x1 : Q2x2 : · · · Qnxn : B(x1, . . . , xn)

where Qi ∈ {∃, ∀} is a quantifier and where B(x1, . . . , xn) is a Boolean
expression of polynomial inequalities, consisting of conjunctions and

disjunctions of statements:

p(a) ⩾ 0, p(a) > 0, p(a) = 0, p(a) < 0, p(a) ⩽ 0.

Corollary 6.2.4 (Tarski–Seidenberg quantifier elimination)

Statements in first-order logic are decidable. Moreover, for every

formula in first-order logic, there exists a quantifier-free formula ψ

in first-order logic such that φ = ψ.

Proof. First note that

{(x1, . . . , xn) ∈ Rn : B(x1, . . . , xn) is true}

is semi-algebraic. Iteratively applying Theorem 6.2.2 to all variables

shows the statement.

6.2.2 Hilbert’s basis theorem

In the following, we present Hilbert’s basis theorem and its computational

consequences. We start by introducing the notion of algebraic varieties.

Definition 6.2.2

A set V ⊆ Rn
is called an algebraic variety if there exists a subset

7
7: This set does not have to be finite.

P ⊆ R[x1, . . . , xn] such that

V = {a ∈ Rn : f (a) = 0 for all f ∈ P}.

Let ( fi)i∈N be a recursively enumerable sequence
8
of polynomials in n 8: A sequence is called recursively enu-

merable if there exists a Turing machine

that computes the first n sequence ele-

ments in finite time for every n.

variables generating the algebraic variety

V
(
( fi)i∈N

)
= {a ∈ Rn : fi(a1, . . . , an) = 0 for all i ∈ N}

We consider now the following decision problem:

Problem 6.2.5

Given a recursively enumerable sequence of polynomials ( fi)i∈N,

decide the following statement:

∀x ∈ V
(
( fi)i∈N

)
: p(x) ⩾ 0. (6.4)

Note that there is no obvious way to verify both yes- and no-instances.

We will now present Hilbert’s basis theorem that will show that Problem

6.2.5 is in RE, i.e. the problem is semi-decidable.
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Theorem 6.2.6 (Hilbert’s basis theorem)

Let V be an algebraic variety generated by S ⊆ R[x1, . . . xn].
Then there exist finitely many polynomials f1, . . . , fk ∈ S such that

V = {x ∈ Rn : f1(x) = . . . = fk(x) = 0}.

For a proof, we refer to [105].
9
Note that in contrast to the Tarski–9: Hilbert’s basis theorem is usually

stated as follows: every ideal I ⊆
R[x1, . . . , xn] is finitely generated. The

ideal in our formulation is the set of

polynomials that generate the algebraic

variety and the finitely many generators

of V correspond to the generators of the

ideal.

Seidenberg Theorem (Theorem 6.2.2) there is no constructive way to

obtain the polynomials f1, . . . , fk or the upper bound k. However, if

( fi)i∈N is a sequence of polynomials generating V, then Theorem 6.2.6

shows that there exists N ∈ N such that

V = {x ∈ Rn : f1(x) = f2(x) = . . . = fN(x) = 0}.

This allows us to verify yes-instances of Equation (6.4) in finite time via

the following algorithm:

(i) Consider the algebraic variety

VN = {x ∈ Rn : f1(x) = . . . = fN(x) = 0}.

(ii) Decide the following statement in first-order logic:

∀x ∈ VN : p(x) ⩾ 0. (6.5)

If Equation (6.5) is true, halt and accept the input.

If Equation (6.5) if false, increment N to N + 1.

Due to Theorem 6.2.6, for every yes-instance, there exists N ∈ N such

that Equation (6.5) holds true. Therefore, the algorithm eventually halts

for yes-instances.

In simpler terms, this algorithm leverages the decidability of statements

in first-order logic to assess the truth of the statement:

∀x ∈ V( f1, . . . , fN) : p(x) ⩾ 0

for fixed N. If the statement holds true, then we can infer that

∀x ∈ V
(
( fi)i∈N

)
: p(x) ⩾ 0

since V
(
( fi)i∈N

)
⊆ V( f1, . . . , fN). Conversely, if the statement is false,

then we increment N by one and repeat the procedure. According to

Theorem 6.2.6, there exists a value k such that

V( f1, . . . , fk) = V
(
( fi)i∈N

)
.

Therefore, if the sequence is a yes-instance, then the algorithm also halts

at N = k.

Note that this procedure cannot be used to verify no-instances because it

is unclear what the number k is. It might be the case that determining k
is undecidable.
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Some problems may look very innocent yet be formally very difficult— This chapter is based on [42] and Section

6 of [39].
perhaps uncomputable—or even worse, their computability may be

unknown. Skolem’s problem exemplifies this uncertainty, focusing on

the behavior of linear recurrence sequence (LRS), where each term in

the sequence is generated linearly from its predecessors. Examples

of LRS include well-known sequences like the Fibonacci sequence or

those derived from discretizing differential equations. Despite their

simplicity, LRS are fundamental in various mathematical and computer

science domains, notably in generating pseudo-random numbers [120],

describing the dynamics of cellular automata [82], and many other

applications [47].
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More specifically, an LRS of order s is given by

un = a1un−1 + a2un−2 + · · ·+ asun−s

where a1, . . . , as ∈ R are fixed elements in a ringR, usually commutative.

Together with initial values u1, . . . , us ∈ R, this gives rise to a full

sequence (un)n∈N in R. While several important examples of LRS are

over the ring R = Z, many interesting examples are also defined over

other rings. For example, the Chebyshev polynomials are defined via the

LRS

Tn(x) = 2x · Tn−1(x)− Tn−2(x) with T1(x) := x and T0(x) := 1

over the commutative ring Z[x] of univariate polynomials.

Skolem’s problem is a long-standing open question concerning LRS over

Z [93]. It asks whether an algorithm exists that decides if an LRS attains

the value 0 for some n ∈ N. While partial solutions to Skolem’s problem

are known, implying decidability for order s ⩽ 4 [122, 125], they do not

apply to recurrences of order five or more. A modification of Skolem’s

problem is the positivity problem for LRS. Instead of asking whether the

LRS is non-zero, it asks whether an LRS stays non-negative. In this case

it is also unclear whether an algorithm exists that decides the positivity

problem, as decidability is proven only for s ⩽ 5 [92, 91].

Examples for LRS are moment sequences, in which we have

un = tr(An),

or generalized moment sequences, in which

un = φ(An)

for a given matrix A ∈ Mats(R) and a linear functional φ on Mats(R).
Over a commutative ring R, such generalized moment sequences are as

expressive as LRS, i.e. every LRS can be expressed as a moment sequence

and vice versa. For this reason, decidability results for generalized

moment sequences translate to decidability results for Skolem’s problem

and the positivity problem.
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Table 7.1: For which instance sets is the

(generalized)momentmembership prob-

lem decidable or undecidable? This table

summarizes the results of this paper.

Decidable cases Undecidable cases

Unitary and Orthogonal matrices Comm. polynomials Z[x1, . . . , xd]

(Section 7.2.2) (Section 7.3.1)

Dominant or real eigenvalue matrices Non-comm. polynomials Z⟨z1, . . . , zd⟩

(Section 7.2.3) (Section 7.3.2)

In this paper, we study the decidability of the moment membership

problem. That is, we consider the problem: For an s × s matrix A, decide

whether

tr(An) ∈ P ∀n ∈ N

where P is a fixed set. This set usually contains elements that are positive

in some sense, so we call the problem also themoment positivity problem.

Most of our results also hold for generalized moments of the form φ(An)
as above.

One decisive factor in the complexity of the problem is the instance set

D of the matrices, which allows us to distinguish between our two main

results:

▶ We restrict the instance set D ⊆ Mats(Z) and prove decidability

of the problem for a large subclass of integer matrices.

▶ We enlarge the instance set Mats(Z) ⊆ D and prove that the

problem is undecidable for matrices whose entries are elements of

certain unital rings R, for certain P ⊆ R.

Contributions: Specifically, we determine the complexity of the mo-

ment membership problem in the following cases (see Table 7.1):

▶ Decidability: The moment positivity problem is decidable for

orthogonal matrices (Theorem 7.2.3), unitary matrices (Corol-

lary 7.2.5), and matrices with a unique dominant eigenvalue or

only real eigenvalues (Theorem 7.2.7). It follows that the positivity

problem is decidable for simple unitary LRS, i.e. LRS whose char-

acteristic polynomial only has simple roots of modulus 1, as well

as for LRS whose characteristic polynomial has a unique dominant

root, or only real roots.

▶ Undecidability: The generalized problem is undecidable for the

ring of multivariate commutative polynomials (Theorem 7.3.2) as

well as for non-commutative polynomials, where P is the set of

polynomials with nonnegative coefficients (Theorem 7.3.6). This

implies that the corresponding positivity problem for LRS over

commutative polynomials is undecidable.

▶ Free Pólya’s Theorem: As a side result, we prove a free version of

Pólya’s theorem (Theorem 7.3.5). We show that a non-commutative

polynomial has nonnegative coefficients if and only if it is entrywise

nonnegative on the set of entrywise nonnegative matrices.

This paper is structured as follows. In Section 7.1 we introduce the

problem statement and show the relation of moment problems to LRS. In

Section 7.2 we present cases in which the moment problem is decidable.

This includes a review of known results (Section 7.2.1), the decidability for

orthogonal and unitary matrices (Section 7.2.2), and the decidability for

matrices with unique largest eigenvalues or only real roots (Section 7.2.3).
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In Section 7.3,wepresent examples of commutative andnon-commutative

rings where the moment problem is undecidable, as well as a non-

commutative version of Pólya’s Theorem. Moreover, we present a related

undecidable problem on commutative polynomials, from [39].

7.1 Problem statement

Let R be a unital ring, and let A ∈ Mats(R) be an s × s square matrix A unital ring R is an algebraic structure

that generalizes the notion of a field.

Specifically, multiplication needs not to

be commutative and inverses do not have

to exist. It consists of the binary opera-

tions + and ·, that satisfy the following:

▶ (R,+) forms an abelian group

▶ (R, ·) is a monoid, i.e. it is as-

sociative and it contains a multi-

plicative identity.

We denote the multiplicative identity by

1R.

with entries from R. For n ⩾ 0 the nth moment of A is defined as

µn(A) := tr (An)

where tr denotes the usual trace of a matrix, i.e. the sum of its diagonal

entries. The moments of A are clearly elements from R, as for A =(
aij
)

i,j=1,...,s we have

µ0(A) = 1R + · · ·+ 1R︸ ︷︷ ︸
s

and µ1(A) =
s∑

i=1

aii.

and for n ⩾ 2

µn(A) =
s∑

i1,...,in=1

ai1i2 · ai2i3 · · · · ain−1in · aini1 .

Depending on the ring R, the moments are studied in different contexts,

as the following example shows.

Example 7.1.1

Let V be a C-vector space. Consider the tensor algebra

R := T(V) :=
⊕
m⩾0

V⊗m = C ⊕ V ⊕ (V ⊗ V)⊕ · · ·

R forms a unital ring with tensor product as multiplication. Actually,R
is an N-graded unital C-algebra.

For A =
(
|aij⟩

)
i,j ∈ Mats(V) (which embeds into Mats(R)), we obtain

for the moments

µn(A) =
s∑

α1,...,αn=1

|aα1,α2⟩ ⊗ |aα2,α3⟩ ⊗ · · · ⊗ |aαn−1,αn⟩ ⊗ |aαn ,α1⟩ , (7.1)

where the nth
moment is homogeneous of degree n inR. The expression

in Equation (7.1) corresponds to the translational invariant matrix product
state introduced in Section 2.3.1, where s corresponds to the (Θn, Cn)-
rank of µn(A).

Now assume that R is also equipped with a subset P ⊆ R. In our

results and applications, this will always be a set of elements that are

positive in some sense. Further D ⊆ Mats(R) will be the set containing

all instances of our decision problem. The general decision problem that

we will address in this paper is the following:
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Problem 7.1.1 (Moment Positivity Problem)

Let s,P ,D be fixed as above. For A ∈ D decide whether all moments

µn(A) belong to P .

Note that D,P , s are fixed in our formulation of the decision problem.

We are thus looking for an algorithm (tailored to R,P , s and D) that

upon an input of any instance A ∈ D stops after a finite time, and returns

yes if all moments of A belong to P , and no if at least one moment of A
does not belong to P . If such an algorithm exist, we call the moments

membership problem decidable, otherwise we call it undecidable.

Note that if the ring operations are computable andmembership of single

elements in P is decidable, the moments membership problem is clearly

semi-decidable in the following sense. Given A ∈ Mats(R), we simply

compute higher and higher moments of A, and check membership in

P . If some moment does not belong to P , we will know after a finite

time. However, this algorithm runs forever in case that all moments do

belong to P . So the hard part of the problem is certifying membership

of all moments in P . We will make use of the semi-decidability in

Theorem 7.2.3.

7.1.1 Relation to the membership problem for linear

recurrence sequences

In the following, we review the relation of the moment problem with the

positivity problem for linear recurrence sequences. An LRS (un)n∈N ∈
RN

is a sequence whose elements are related to each other linearly, i.e.

un = a1 · un−1 + a2 · un−2 + · · ·+ as · un−s (7.2)

for all n > s. We call s the order of the recurrence relation. The positivity
problem for LRS is the following:

Problem 7.1.2 (Positivitiy for LRS)

Given an LRS as in Equation (7.2) with parameters a1, . . . , as ∈ R
and initial values u1, . . . , us ∈ R, decide whether un ∈ P for all

n ∈ N.

We start with the (well-known) observation that every generalized mo-

ment sequence is an LRS, if R is commutative.

Lemma 7.1.3 (Moment sequences are LRS)

Let R be a commutative unital ring, and let A ∈ Mats(R).
Then (φ(An))n∈N is an LRS of order s, for every R-linear map

φ : Mats(R) → R.

Proof. Let p(x) = xs − a1xs−1 − · · · − as be the characteristic polynomial

of the matrix A. By the Cayley–Hamilton theorem for commutative rings

(see for example [79, Chapter XIV.3]), we have that

As = a1 As−1 + a2 As−2 + · · ·+ as I (7.3)
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and therefore

An = a1 An−1 + a2 An−2 + · · ·+ as An−s

for all n ⩾ s. Applying φ proves the statement.

It is unclear whether a similar statement to Lemma 7.1.3 is true for non-

commutative rings. While there exist versions of the Cayley–Hamilton

theorem for non-commutative rings (see for example [61, 119]), they

cannot be applied to obtain an equation similar to Equation (7.3).

Thenext observation states that LRSare equivalent to generalizedmoment

sequences as introduced above. It can also be found in [92]:

Lemma 7.1.4 (LRS are moment sequences)

Let (un)n∈N be a sequence in a commutative unital ring R. Then

the following are equivalent:

(i) (un)n∈N is an LRS of order s.
(ii) There is a matrix A ∈ Mats(R) and two vectors |v⟩ , |w⟩ ∈ Rs

such that un = ⟨v| An−s |w⟩ for all n > s.

Proof. For (i) ⇒ (ii) assume that the recurrence is given by

un = a1un−1 + a2un−2 + · · ·+ asun−s.

Using the companion matrix

A =


a1 1
a2 1
.
.
.

.
.
.

as−1 1
as


we have that un = ⟨v| An−s |w⟩ where |v⟩ = (us, us−1, . . . , u1)

t
and

|w⟩ = (1, 0, . . . , 0)t.

The proof of (ii)⇒ (i) is analogous to Lemma 7.1.3, by replacing tr by the

function A 7→ ⟨v| A |w⟩. Note that the recurrence starts to hold only for

n > 2s, but for our purposes this is irrelevant.

7.2 Decidable cases

In the followingwe present cases inwhich themomentmembership prob-

lem is decidable. This includes known results for small s (Section 7.2.1),

the moment positivity problem for unitary and orthogonal matrices

(Section 7.2.2), and for matrices with a unique largest eigenvalue or only

real eigenvalues (Section 7.2.3). Throughout this section we will always

choose P = R⩾0.
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7.2.1 Known results: small order

Wefirst reviewknown results on the decidability of themoment positivity

problem. The known results are all about LRS, in view of Lemma 7.1.3

they immediately transfer to moments.

Theorem 7.2.1

The moment positivity problem is decidable in the following cases:

(i) s ⩽ 5,D = Mats(Q).
(ii) s ⩽ 9,D ⊆ Mats(Q) is the set of matrices with simple eigen-

values.

The proof of (i) is contained in [92], the proof of (ii) goes back to [91].

Decidability for other values of s is unknown.

The positivity problem of LRS is closely related to Skolem’s Problem which

asks if some sequence element equals 0. The best result in this direction is

that Skolem’s Problem is NP-hard [16]. The decidability of the positivity

problem implies decidability of Skolem’s Problem. This follows for an

integer LRS because un ̸= 0 if and only if u2
n − 1 ⩾ 0. If (un)n∈N is an

LRS of order s, then u2
n − 1 is an LRS of order s2

. Moreover, since Skolem’s

Problem is NP-hard, the positivity problem is NP-hard as well.

7.2.2 Orthogonal and unitary matrices

We now show that the moment positivity problem for orthogonal (Theo-

rem 7.2.3) and unitary matrices (Corollary 7.2.5) is decidable. The proof

strategy is very similar to [15].

We say that a set X ⊆ Rm
is algebraic if there are polynomials

p1, . . . , pn : Rm → R

such that

X = {x ∈ Rm : p1(x) = · · · = pn(x) = 0}.

In this case, we call X the algebraic variety defined by p1, . . . , pn, and

write X = V(p1, . . . , pn). Even if the set of defining polynomials is

infinite, there always exists a finite choice of polynomials defining the

same algebraic variety, by Hilbert’s basis theorem. Since we work over R,

we can even reduce to a single polynomial, by taking the sum of squares

of the defining polynomials.

For matrices A1, . . . , Ad ∈ Mats(R), let

⟨A1, A2, . . . , Ad⟩ :=
{

Ak1 · · · Akℓ : ℓ ∈ N, k1, . . . , kℓ = 1, . . . , d
}

be the semigroup generated by A1, . . . , Ad. We denote by ⟨A1, . . . , Ad⟩
the topological closure inside Mats(R) with respect to the Euclidean

topology.

Lemma 7.2.2

Let A1, . . . , Ad ∈ Os(Q) be orthogonal s × s matrices with ratio-



7.2 Decidable cases 125

nal entries. Then G := ⟨A1, . . . , Ad⟩ is a compact algebraic group.

Moreover there is a recursively enumerable sequence of rational

polynomials (pk)k∈N defining G inside Mats(R).

Proof. Compactness of G is obvious. To prove that G is a group we only

have to show that A−1 ∈ G for every A ∈ G. Consider the sequence

(Ak)k∈N. By compactness, there exists a converging subsequence. In

other words, for every ε > 0, there exists n2 > n1 + 1 such that

∥An1 − An2∥ < ε

where ∥ · ∥ is the operator norm. Since ∥A · B∥ = ∥B∥ for every matrix

B, we obtain

∥A−1 − An2−n1−1∥ < ε.

This shows that A−1 ∈ G.

Now note that every compact group G ⊆ Mats(R) is algebraic (see for
example [88, Chapter 3, Section 4.4]). In particular, it is shown there that

G =V
(

R[X]G
)

:=V
(

p ∈ R[X] : p(Is) = 0, p(gX) = p(X) for all g ∈ G
)

,

where Is is the identity matrix of size s.

Now note that if G is generated by A1, . . . , Ad, then the invariance only

needs to be checked w.r.t. the generators, i.e.

G = V
(

p ∈ R[X] : p(Is) = 0, p(AiX) = p(X) for i = 1, . . . , d
)

.

Since the conditions p(Is) = 0 and p(AiX) = p(X) are linear in the

coefficients of p, there exists a basis (pk)k∈N of the space of solutions of

these conditions. Moreover, the coefficients of the basis vectors pk can be

chosen from Q, since all conditions are rational. We now clearly have

G = V(pk : k ∈ N).

The polynomials pk can be computed recursively by solving the system

of linear equations over the space of polynomials with degree d, and by

increasing d iteratively.

Note that the statement is not true anymore when replacing R by C. For

example the group

G :=
{

eiθ : θ ∈ [0, 2π)
}

,

seen as a subset of 1 × 1 matrices, is not algebraic. However, we show

that the moment problem also generalizes to unitary matrices (see

Corollary 7.2.5).

Since R[X] is a Noetherian ring, there exists n ∈ N such that

G = V(p1, . . . , pn).
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This will be an important ingredient to show the decidability of the

moment problem. Note however, that n can be arbitrarily large and it is

unclear whether n is computable or not.

Theorem 7.2.3

The moment positivity problem for D = Os(Q) is decidable.

Proof. We will present two procedures, each certifying either yes- or

no-instances in finite time. Letting these algorithms run in parallel will

result in a decision algorithm for the problem.

Certifying no-instances for A ∈ Os(Q) is achieved by iteratively checking

whether tr(An) ⩾ 0 holds, for every n. If A is a no-instance, then this

algorithm will halt after detecting tr(An) < 0 for the first time.

We now present an algorithm to certify yes-instances in finite time. For a

given A ∈ Os(Q), the moment membership problem can be rephrased

as

∀B ∈ ⟨A⟩ : tr(B) ⩾ 0.

By the continuity of the trace, this is equivalent to

∀B ∈ ⟨A⟩ : tr(B) ⩾ 0. (7.4)

By Lemma 7.2.2 there exists a recursively enumerable sequence of

polynomials (pk)k∈N and some n ∈ N such that

⟨A⟩ = V(p1, . . . , pn).

Now step k of the algorithm verifies the statement

∀B ∈ V(p1, . . . , pk) : tr(B) ⩾ 0 (7.5)

which is decidable by the Tarski–Seidenberg Theorem, since it is a

statement in first order logic. As soon as Equation 7.5 is true for the first

time, the algorithm halts and outputs a correct yes-answer. This will

indeed be the case after at most n steps, if A is a yes-instance.

Remark 7.2.1

This statement can be generalized in two directions:

(i) By the same argument, the following problem is also decidable:

Given A1, . . . Ad ∈ Os(Q) for a fixed matrix size s, decide if:

∀ℓ ∈ N ∀k1, . . . , kℓ ∈ {1, . . . , d} : tr(Ak1 · · · Akℓ) ⩾ 0.

Note that generalizing this decision problem to arbitrary ma-

trices makes it undecidable [36].

(ii) The proof remains true if tr is replaced by any other continu-

ous function. This in particular implies that the generalized

problem

∀n ∈ N : φ(An) ⩾ 0

is decidable.
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We now generalize the result to unitary matrices, by embedding them

into orthogonal matrices of larger size. We denote by Q[i] the field of

complex numbers with rational real and imaginary parts, and we denote

the set of s × s unitary matrices with entries in Q[i] by Us(Q[i]).

Lemma 7.2.4

The map

Ψ : Us(Q[i]) → O2s(Q)

U = A + iB 7→
(

A −B
B A

)
is a group homomorphism. Moreover we have

tr(U) =
1
2

tr
(

Ψ(U) ·
(

Is iIs
−iIs Is

))
,

where Is is the identity matrix of size s.

Proof. The map is well defined since Ψ(U) is orthogonal if and only if U
is unitary. The rest is immediate.

The main results of this section are summarized in the following two

corollaries.

Corollary 7.2.5

For each s ⩾ 1, the moment positivity problem for matrices from

Us(Q[i]) is decidable.

Proof. It follows immediately from Lemma 7.2.4, Theorem 7.2.3 and

Remark 7.2.1 (ii).

Corollary 7.2.6

The positivity problem is decidable for simple unitary LRS, i.e.

un = a1un−1 + · · ·+ asun−s

with a1, . . . , as ∈ Q[i], where the roots of

p(x) = xs − a1xs−1 − a2xs−2 − . . . − as

are all simple and of modulus 1.

Proof. We choose a unitary matrix A ∈ Us(C)whose eigenvalues are the

roots of p, and whose entries are computable numbers. For example, one

can take a diagonal matrix with the specified roots on the diagonal. We

obtain the reccurence

An = a1 An−1 + · · ·+ as An−s

for all n ⩾ s, and since the roots are all simple, p is actually the minimal

polynomial of A. So Is, A, A2, . . . , As−1
are linearly independent, and
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we can thus find a linear functional φ on Mats(C) with φ(Ai) = ui for

i = 0, . . . , s − 1. Now as stated in Remark 7.2.1 and Lemma 7.2.4 above,

it is decidable whether φ(Ai) ⩾ 0 holds for all i, and since this sequence

fulfills the same recurrence and initial conditions as (ui)i⩾1, the two

sequences coincide.

7.2.3 Matrices with a unique dominant eigenvalue or real

eigenvalues

In the following, we show that for matrices with a unique dominant

eigenvalue, and for matrices with only real eigenvalues, the moment

problem is decidable. Note that the idea for the case of a unique domi-

nating eigenvalue is already present in [92], but restricted to multiplicity

1 and matrices of size at most s = 5.

Theorem 7.2.7

The moment positivity problem is decidable in the following cases:

(i) R = Q, s arbitrary, and the set of instances restricted to matri-

ces with a unique dominant eigenvalue.

(ii) R = Q, s arbitrary, and the set of instances restricted to matri-

ces with only real eigenvalues.

Proof. We provide algorithms that decide the moments positivity prob-

lem for the stated instance sets. Note that we can assume without loss of

generality that A ∈ Mats(Z), by possibly multiplying the matrix with

the largest denominator of its entries.

For (i) let A ∈ Mats(Z) have a unique dominant eigenvalue. Since A
has real entries, the non-real eigenvalues of A come in conjugate pairs.

Since there is exactly one eigenvalue λ1 of largest absolute value, it must

therefore be real. We let k denote its multiplicity and obtain

|µn(A)− k · λn
1 | ⩽ (s − k)|λ2|n,

where λ2 denotes the second largest eigenvalue in absolute value. Thus

it suffices to check µn(A) ⩾ 0 for n up to

log(s/k − 1)
log(|λ1|)− log(|λ2|)

.

(ii): In this case only odd moments matter, since the even moments are

always nonnegative. If the dominant eigenvalues all have the same sign,

then we can apply (i). Otherwise, since odd powers of eigenvalues with

the same absolute values but different signs cancel out, we can reduce

the problem to a smaller matrix, where the dominant eigenvalues do

have the same sign.

7.2.4 Further generalizations

In the following, we present a generalization of the statements in Sec-

tion 7.2.2 and Section 7.2.3. For a matrix A ∈ Mats(R), we denote by
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spec(A) the multi-set of all eigenvalues of A (where multiple eigenvalues

are represented by multiple elements of spec(A)). Express

spec(A) = per1(A) ∪ per2(A) ∪ · · · ∪ pers(A)

as a partition of peripheral spectra, i.e. eigenvalues of the same absolute

value, indecreasing order (i.e.per1(A) contains thedominant eigenvalues,

per2(A) the eigenvalues of second largest absolute value...). Note that

peri(A) can be empty if A has multiple eigenvalues of same absolute

value. Moreover, let

µ
(i)
n (A) :=

∑
λ∈peri(A)

(
λ

|λ|

)n
.

We define

ηi(A) =

{
infn∈N µ

(i)
n (A) : if peri(A) ̸= ∅

∞ : if peri(A) = ∅

and

γi(A) =

{
supn∈N µ

(i)
pn+q(A) : if peri(A) ̸= ∅

−∞ : if peri(A) = ∅.
,

where p, q ⩾ 1 are arbitrary but fixed integers. So we compute the

supremum along an arithmetic progression.

Lemma 7.2.8 (Computability of ηi and γi)

The following two problems are decidable:

(i) Given
1

1: To assume that the inputs attain a fi-

nite description, we restrict to algebraic

numbers, i.e. numbers that can be repre-

sented as roots of an integer polynomial.

This is enough for applying Lemma 7.2.8

in the proof of Theorem 7.2.9.

A ∈ Mats(R), c ∈ R, decide whether ηi(A) ⩾ c.
(ii) Given A ∈ Mats(R), c ∈ R, decide whether γi(A) ⩽ c.

Proof. The decision algorithms are very similar to one from the proof of

Theorem 7.2.3. To construct an algorithm for (i), let the following two

procedures run in parallel:

(a) Evaluate µ
(i)
n (A) for increasing n ∈ N. Halt if µ

(i)
n (A) < c.

(b) Check the statement

∀B ∈ V(p1, . . . , pk) : tr(B) ⩾ c

for increasing k ∈ N, where (pℓ)ℓ∈N define the variety ⟨U⟩, where

U is the diagonal matrix with eigenvalues λ/|λ| for λ ∈ peri(A).
Halt if the statement is true.

If A, c is a no-instance of (i), then (ii) will eventually halt; if A, c is a

yes-instance, (b) will eventually halt, for the same reason as in the proof

of Theorem 7.2.3.

The algorithm for (ii) is very similar. Let the following two procedures

run in parallel:

(a) Evaluate µ
(i)
pn+q(A) for increasing n ∈ N. Halt, if µ

(i)
pn+q(A) > c.

(b) Check the statement

∀B ∈ V(p1, . . . , pk) : tr(UqB) ⩽ c
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for increasing k ∈ N, where (pℓ)ℓ∈N define the group ⟨Up⟩, where

U is the diagonal matrix with eigenvalues λ/|λ| for λ ∈ peri(A).
Halt, if the statement is true.

In we evaluate a generalized moment, so recall Remark 7.2.1 (ii).

It is unclear whether ηi(A) > c or ηi(A) = c is decidable. This is due

to the fact that we do not know whether µ
(i)
n (A) attains the infimum/-

supremum for finite n.

Theorem 7.2.9

For a fixed parameter ε > 0, the moment positivity problem is

decidable for all non-zero matrices A satisfying one of the following

conditions:

(i) ∃k ∈ N : η1(A), . . . , ηk(A) ⩾ 0, ηk+1(A) ⩾ ε.
(ii) ∃k ∈ N : γ1(A), . . . , γk(A) ⩽ 0, γk+1(A) ⩽ −ε.
(iii) η1(A) < 0.

If (ii) or (iii) are satisfied, then A is automatically a no-instance. If (i)

is satisfied, then A can be a yes or a no-instance. Moreover, each of

the above criteria is decidable.

Proof. First, checking whether A satisfies (i), (ii) or (iii) is decidable by

Lemma 7.2.8, and since there are only finitely many of these statements

to check.

To prove (i), assume that ηk+1(A) ̸= ∞ (the other case is trivial). Let

λi ∈ peri(A). We have that

µn(A) =
d∑

i=1

|λi|nµ
(i)
n (A) ⩾ |λk+1|n

ε − s
d∑

i=k+2

(
|λi|

|λk+1|

)n


which is positive for

n ⩾
log(ε)− log(sd)

log(|λk+2|)− log(|λk+1|)
.

So we only need to check finitely many instances of the problem.

For (ii) we have that

µm(A) =
d∑

i=1

|λi|mµ
(i)
m (A) < |λk+1|m

−ε + s
d∑

i=k+2

(
|λi|

|λk+1|

)m
 .

Now there clearly exists some m of the form pn + q such that the right

hand side is negative.

For (iii) note that η1(A) < 0 is decidable, since η1(A) ⩾ 0 is decidable

by Lemma 7.2.8. Let 0 < δ < −η1(A). Then there exists an increasing

sequence (nℓ)ℓ∈N such that µ
(1)
nℓ

(A) < η1(A) + δ < 0 for all ℓ. This

follows from the fact that for a unitary matrix U, the group {Un : n ∈ N}
is either finite or contains no isolated points. This follows from the fact

that if the set contains an isolated point, then all elements are isolated.
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But a compact set which contains only isolated points is finite. Hence

there exists an increasing sequence (nℓ)ℓ such that

ηi(U) ⩽ tr(Unℓ) ⩽ ηi(U) +
1
ℓ

.

Therefore we have

µnℓ
(A) =

d∑
i=1

|λi|nℓµ
(i)
nℓ
(A) < |λ1|nℓ

(
η1(A) + δ + s

d∑
i=2

(
|λi|
|λ1|

)nℓ
)

.

Again there exists ℓ0 such that µnℓ0
(A) < 0.

7.3 Undecidable cases

We now present two finitely generated rings, for which the moment

membership problem is undecidable. Specifically, in Section 7.3.1 we

prove that the moment membership problem is undecidable for the ring

of commutative polynomials R = Z[x1, . . . , xd] if n is sufficiently large.

In Section 7.3.2, we show that the moment membership problem is also

undecidable for the space of non-commutative polynomials

R = Z⟨z1, . . . , zd⟩.

7.3.1 Commutative polynomial rings

In the following, we show that the generalized moment membership

problem for R = Z[x1, . . . , xd] and the cone

Pcoeff =
{

p ∈ Z[x1, . . . , xd] : all coefficients of p are nonnegative

}
is undecidable. In particular, we consider the following problem

Problem 7.3.1

Let M ∈ Mats(R) be a fixed matrix. For an input A ∈ Mats(R),
decide whether

tr(An · M) ∈ P

holds for all n ⩾ 1.

For generalized moments of the form A 7→ tr(An · M), we obtain the

following result:

Theorem 7.3.2

If s, d ∈ N are large enough, and M is chosen suitably, then Problem

7.3.1 is undecidable for R = Z[x1, . . . , xd] and Pcoeff.

In order to prove this theorem, we present a chain of two reductions.

We start with a known undecidable problem, a version of the matrix

mortality problem:
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Proposition 7.3.3

If s and d are integers that are large enough, then the following

problem is is undecidable:

Let A1, . . . , Ad ∈ Mats(Z). Does there exist a choice of n1, . . . , nd ∈
N such that

An1
1 · An2

2 · · · And
d = 0.

For a proof of Proposition 7.3.3 we refer to [10]. We now present the first

reduction, that shows that a positivity problem for traces is undecid-

able.

Lemma 7.3.4

For large enough values of s and d, and a suitable matrix N ∈
Mats(Z), the following problem is undecidable: Given A1, . . . , Ad ∈
Mats(Z), do there exist n1, . . . , nd ∈ N with

tr(An1
1 · An2

2 · · · And
d · N) < 0?

Proof. We prove the statement by a reduction from Proposition 7.3.3.

First, fix the matrix

N =

(
0 0
0 1

)
+

s∑
i,j=1

(
Eij ⊗ Eij 0

0 0

)
∈ Mats(Z)⊗2 ⊕ Z ⊆ Mats2+1(Z)

where Eij = |i⟩ ⟨j|with |k⟩ being the kth standard vector. For everymatrix

in Mats2+1(Z) of the form

Y =

(
X ⊗ X 0

0 a

)
we have

tr(YN) = a +
s∑

i,j=1

X2
ij.

For an instance A1, . . . , Ad ∈ Mats(Z) of Proposition 7.3.3, define the

following d + 1 matrices:

Bi =

(
Ai ⊗ Ai 0

0 1

)
for i = 1, . . . , d

and

Bd+1 =

(
Is ⊗ Is 0

0 −1

)
where Is is the identity matrix of size s.

Let n1, . . . , nd ∈ N such that

An1
1 · · · And

d = 0.

Choosing nd+1 = 1 we obtain

tr
(

Bn1
1 · · · Bnd+1

d+1 · N
)
= −1 +

s∑
i,j=1

(
An1

1 · · · And
d
)2

ij = −1 < 0.
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Conversely, let n1, . . . , nd+1 ∈ N such that tr(Bn1
1 · · · Bnd+1

d+1 · N) < 0.
This is clearly only possible for nd+1 odd and

s∑
i,j=1

(
An1

1 · · · And
d
)2

ij = 0,

which implies An1
1 · · · And

d = 0.

We are now ready to prove the main result of this section.

Proof of Theorem 7.3.2. Given A1, . . . , Ad ∈ Mats(Z), set

A =
d∑

i=1

∑
1⩽j⩽i

|j⟩ ⟨i|

⊗ Ai · xi ∈ Matds(R).

Moreover, define

M = |ϕ⟩ ⟨ϕ| ⊗ N

with

|ϕ⟩ = |1⟩+ |2⟩+ . . . + |s⟩

and N as in Lemma 7.3.4. We have that

tr(An M) =
∑

1⩽i1⩽···⩽in⩽d

i1 · tr(Ai1 · · · Ain · N) · xi1 · · · xin

=
∑

n1+···+nd=n
cn1,...,nd︸ ︷︷ ︸

⩾1

· tr(An1
1 · · · And

d · N) · xn1
1 · · · xnd

d

where cn1,...,nd = min{i : ni ̸= 0}. Thus Problem 7.3.1 reduces to the

undecidable problem from Lemma 7.3.4.

Note that since the sequence tr(An M) is clearly an LRS (see Lemma 7.1.3),

the last result shows that positivity of LRS over R = Z[x1, . . . , xd] is
undecidable in general.

7.3.2 Non-commutative polynomial rings

We now consider the ring R = Z⟨z1, . . . , zd⟩ of non-commutative poly-

nomials, and show that its moment membership problem is undecidable

for the cone of polynomials with positive coefficients. As a Z-module, a

basis of R consists of all words in the letters z1, . . . , zd, where the order

of letters does matter. Concatenation of words extends to a multiplication

making R a unital ring, where 1 corresponds to the empty word. There

is a slightly different way to define this object, namely just as the tensor

algebra

Z⟨z1, . . . , zd⟩ = T(Zd).

The equivalence of definitions is apparent when identifying a word

zk1 · · · zkm with the element |k1, . . . , km⟩ ∈
(

Zd
)⊗m

, where |r⟩ denotes
the r-th standard basis vector in Zd

.
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We equip R with two (a priori) different sets of positive elements:

Pcoeff := Z⩾0⟨z1, . . . , zd⟩
=
{

p ∈ Z⟨z1, . . . , zd⟩ : all coefficients of p are nonnegative

}
Peval :=

{
p ∈ Z⟨z1, . . . , zd⟩ :

∀ℓ, A1, . . . , Ad ∈ Matℓ(Z⩾0) :
p(A1, . . . , Ad) ∈ Matℓ(Z⩾0)

}
.

We first show that both cones coincide, which is a free version of Pólya’s

Theorem.

Theorem 7.3.5 (Free Pólya’s Theorem)

Let p ∈ C⟨z1, . . . , zd⟩ with m := deg(p). Then the following are

equivalent:

(i) All coefficients of p are nonnegative reals.

(ii) For all A1, . . . , Ad ∈ Matm+1(Z⩾0) we have

p(A1, . . . , Ad) ∈ Matm+1(R⩾0).

In particular, Pcoeff = Peval, and in the definition of Peval one can

restrict ℓ to deg(p) + 1.

Proof. (i) ⇒ (ii) is obvious (even without the restriction on the matrix

size m + 1). For (ii) ⇒ (i) we construct matrices A1, . . . , Ad that allow us

to isolate a single coefficient of p.

Let zk1 · · · zkℓ be a word in the letters z1, . . . , zd. For j = 1, . . . , d define

Aj :=
∑

i=1,...,ℓ; ki=j

Ei,i+1 ∈ Matℓ+1(Z⩾0),

where Ei,j denotes the matrix (of size ℓ+ 1) with a 1 in position (i, j) and
zeros elsewhere. For t1, . . . , tr ∈ {1, . . . , d} we have

At1 · · · Atr =
∑

i
ki = t1

ki+1 = t2
.

.

.

ki+r−1 = tr

Ei,i+r ∈ Matℓ+1(Z⩾0).

In particular, the (1, ℓ+ 1)-entry of a product At1 · · · Atr is 1 if and only

if r = ℓ and (k1, . . . , kℓ) = (t1, . . . , tℓ); in all other cases it is zero. So

p(A1, . . . , Ad) contains in its upper right entry precisely the coefficient

of p at the word zk1 · · · zkℓ .

Since all words appearing in p are of length at most deg(p) = m, we

can do this procedure with matrices Aj of size at most m + 1, and thus

clearly with matrices of size exactly m + 1.

Remark 7.3.1 (Pólya’s theorem for commutative polynomials)

Pólya’s theorem [98, 64] states that for every homogeneous polyno-
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mial p ∈ R[x1, . . . , xd] that is strictly positive on the d-simplex

∆d :=

{
(a1, . . . , ad) ∈ Rd : ai ⩾ 0,

d∑
i=1

ai = 1

}
,

the polynomial

(x1 + · · ·+ xd)
n · p(x1, . . . , xd)

haspositive coefficients, for sufficiently largen ∈ N. InTheorem7.3.5,

the space of nonnegative matrices takes the role of the d-simplex.

While in the commutative case we have to multiply p with an

additional polynomial, this is not the case in the free version.

We now show that for these cones, the moment membership problem is

undecidable.

Theorem 7.3.6

Let d, s ⩾ 7. Then the moment membership problem for R =
Z⟨z1, . . . , zd⟩, Pcoeff = Peval and s is undecidable. This remains

true if we restrict the instances to linear matrix polynomials, i.e.

A ∈ Mats(Z⟨z1, . . . , zd⟩)whose entries are linear forms in z1, . . . , zd.

Proof. For A =
∑d

k=1 zk Ak with Ak ∈ Mats(Z) we have

µn(A) =
d∑

k1,...,kn=1

tr(Ak1 · · · Akn) · zk1 · · · zkn .

So µn(A) ∈ Pcoeff means that tr(Ak1 · · · Akn) ⩾ 0 for all k1, . . . , kn =
1, . . . , d. Undecidability of this problemwas proven in [36, Lemma 3].

7.3.3 Commutative polynomials with an unbounded

number of variables

It is an open question whether Problem 7.3.1 remains undecidable for

commutative polynomials if the set P is specified to be sos polynomials

or to be nonnegative polynomials. In this part, we show that a certain

generalization of the problem becomes undecidable, even for sos and

nonnegative polynomials.

More specifically, we show that the invariant unconstraint (Θn, Cn)-
decomposition for polynomials

2
has no local and computable certificate 2: For the definition of (Θn, Cn)-

decompositions of polynomials, we refer

to Section 2.3.1.

of positivity. We will reach this conclusion by proving that Problem 7.3.7

is undecidable.

Given a collectionof s2
polynomials inZ[x], denoted

(
pα,β

)s
α,β=1, define

pn :=
s∑

α1,...,αn=1

pα1,α2(x
[1]) · pα2,α3(x

[2]) · · · pαn ,α1(x
[n]). (7.6)
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We have that pn ∈ R[x[1], . . . , x[n]]. Note that the summation indices

are arranged in a circle Θn, and that the local polynomials do not

depend on the site, so pn is invariant under the cyclic group Cn. The

previous expression is thus a (Θn, Cn)-decomposition of pn. Moreover,

pn generalizes the moment problem in the following sense: If

x := x[1] = x[2] = . . . = x[n],

then we obtain a moment sequence

pn(x) = tr(An)

with

A =


p1,1(x) p1,2(x) · · · p1,s(x)
p2,1(x) p2,2(x)

.

.

.

.
.
.

ps,1(x) ps,s(x)

 .

Problem 7.3.7 (Positivity of (Θn, Cn)-decompositions)

Given positive integers m and s and a collection of polynomi-

als

(
pα,β

)s
α,β=1 ∈ Z[x] (where x denotes a vector of m variables

(x1, . . . , xm)),

(a) Is pn sos for all n ∈ N?

(b) Is pn nonnegative for all n ∈ N?

Theorem 7.3.8 (Undecidability of Problem 7.3.7)

Problem 7.3.7 (a) and Problem 7.3.7 (b) are undecidable. This is true

even if m, D ⩾ 7 and if the polynomials are of the form

pα,β(x) =
m∑

j=1

pα,β,j · x2
j

with pα,β,j ∈ Z for all α, β ∈ {1, . . . , D}.

So there does not exist an algorithm that can decide in finite time whether

pn is sos or nonnegative for all n, given the local polynomials as input. We

will prove Theorem 7.3.8 by a reduction from the following undecidable

problem:

Theorem 7.3.9 (Undecidability of positivity for all system sizes [36])

Let |Tα,β⟩ ∈ Zm
for α, β ∈ {1, . . . , D} be a collection of vectors. For

n ⩾ 0 define

|Tn⟩ :=
D∑

α1,...,αn=1

|Tα1,α2⟩ ⊗ |Tα2,α3⟩ ⊗ · · · ⊗ |Tαn ,α1⟩ .

For m, D ⩾ 7, the following problem is undecidable:

Is |Tn⟩ nonnegative for all n ∈ N?
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Proof of Theorem 7.3.8. Let |Tα,β⟩ ∈ Zm
be a collection of vectors for

α, β ∈ {1, . . . , D}. We apply the construction from Section 5.2.3 to obtain

the collection of polynomials

pα,β =
m∑

j=1

⟨j | Tα,β⟩ x2
j

and generate the polynomials pn ∈ Z[x[1], . . . , x[n]]. It is obvious that
p|Tn⟩ = pn for all n, and from Lemma 5.2.4 we thus know that |Tn⟩
is nonnegative if and only if pn is a sum of squares/nonnegative. So

decidability of Problem 7.3.7 (a) or (b) contradicts Theorem 7.3.9.

We remark that Problem 7.3.7 remains undecidable if the input polynomi-

als are in Q[x], since multiplying all polynomials by a positive constant

does not change the positivity/sos property.

It can also be shown that a bounded version of the questions of Prob-

lem 7.3.7— i.e. where n is fixed—result in an NP-hard problem (see

Chapter 8).

7.4 Conclusion

We have studied the moment membership problem (Problem 7.1.1) for

matrices over a ring. We have shown that there is a relation to LRS for

commutative rings (Lemma 7.1.3 and Lemma 7.1.4) and that the moments

positivity problem is decidable in many cases, including unitary and

orthogonal matrices (Theorem 7.2.3 and Corollary 7.2.5) as well as

matrices with a unique dominating eigenvalue or only real eigenvalues

(Theorem 7.2.7). Finally, we have shown that the generalized moment

membership problem is undecidable over the ring of commutative and

non-commutative polynomials, where the positivity cone is given by the

set of polynomials with non-negative coefficients (Theorem 7.3.2 and

Theorem 7.3.6).

The central open question is still whether the moment membership

problem is decidable or undecidable for R = Q and P = [0, ∞). In the

context of rings it would be interesting, whether it is also undecidable

for commutative polynomials for the cone of sum-of-square polynomials

or the non-negative polynomials. This might be the case since these

cones have a richer structure than that of polynomials with nonnegative

coefficients.
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Many problems in quantum information and quantum many-body This chapter is based on [73].

physics are undecidable. This includes the spectral gap of physical

systems [34, 8], membership problems for quantum correlations [116,

117, 70, 53, 86], properties of tensor networks [36, 72, 108], measurement

occurrence and reachability problems [46, 129], and many more [39, 48,

15, 107, 51]. In addition, other problems are believed to be undecidable,
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[129], or tensor-stable positivity [48].
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All these problems have a common theme: They ask for a property that

includes an unbounded parameter. For example, in a quantum correlation

scenario, the dimension of the shared quantum state between the two

parties may be unbounded. Similarly, properties characterizing many-

body systems, such as the spectral gap, inherently involve assertions

across arbitrarily large system sizes.

On the other hand, many problems in science, engineering, and mathe-

matics fall under the umbrella of NP-hard problems [128]. Some examples

relevant for physics are finding the ground state energy of an Ising model

[4], the training of variational quantum algorithms [14], or the quantum

separability problem [62, 56], and many more. These problems typically

concern properties where all size parameters are bounded or even fixed.

For example, the ground state energy problem concerns the minimal

energy of Hamiltonians with fixed system size.

This highlights an analogy between certain classes of problems: an un-
bounded problem tests a property for an unbounded number of occurrences

(which can be generated recursively), whereas the corresponding bounded
version tests the same property for a bounded number of situations.

This includes, for example, testing a certain property of a translational

invariant spin system for all system sizes, or up to a certain size. A com-

mon observation in this context is that bounded versions of undecidable

problems tend to be NP-hard. This insight has been noted in various

examples, as documented in [72, 17, 108], as well as discussed in [128,

Chapter 3].

Despite this analogy, the techniques used to prove NP-hardness and

undecidability often differ.While proofs of undecidability predominantly

hinge on reductions from the halting problem, the Post correspondence

problem or the Wang tiling problem, NP-hardness proofs mainly rely

on reductions from the satisfiability problem SAT, or from NP-complete

graph problems like the 3-coloring problem or MaxCut.
1

1: We refer to [2,Chapter 2] for thedetails

on these problems.

In this work, we establish a relation between undecidable problems

and certain NP-hard problems. Specifically, we define the notion of a

bounded version of a problem and a method to leverage the reduction

from unbounded problems to their corresponding bounded problems

(see Figure 8.1). Subsequently, we present two versions of the halting

problem whose bounded versions are NP-hard, and use these, together

with our method, to provide simple and unified proofs of the NP-
hardness of the bounded version of the Post correspondence problem,
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Figure 8.1: If Problem B is at least as

hard as Problem A (i.e. there is a re-

duction from A to B), is the bounded

version of Problem B at least as hard

as the bounded version of Problem A?

Theorem 8.1.1 gives a sufficient condi-

tion when this is the case by reusing the

reduction between their unbounded ver-

sions.

Problem A Problem B

Bounded version

of Problem A

Bounded version

of Problem B

Reduction

Definition 8.1.1Definition 8.1.1 Theorem 8.1.1

the matrix mortality problem, the positivity of matrix product operators,

the reachability problem, the tiling problem, and the ground state energy

problem.

This work sheds light on the various intractability levels of problems used

in theoretical physics by highlighting the computational consequences of

bounding a parameter. More generally, this work is part of a tradition of

studying problems from a computational perspective, which has proven

extremely successful in mathematics and beyond [128]. For example, the

hardness results of the ground state energy problem rule out a tractable

solution of the ground state for a given Hamiltonian, both for unbounded

system sizes as well as a fixed system size.

8.1 Bounding

In this section, we present a definition of a bounded version of a language

(Section 8.1.1), and a method to leverage the reduction from unbounded

problems to their corresponding bounded versions (Section 8.1.2).

8.1.1 Definition of bounding

Let Σ be a finite alphabet and Σ∗
the set of all words generated from Σ.

A language L ⊆ Σ∗
encodes all the yes-instances of a given problem, i.e.

x ∈ L if x is a yes-instance and x /∈ L if x is a no-instance.

We now define a bounded version LB of L. For this purpose, we add a

second parameter n ∈ N to every yes-instance in L. This parameter acts

as an acceptance threshold for every yes-instance x ∈ L and is encoded

in unary, i.e. for 1 ∈ Σ, every element of LB is of the form ⟨x, 1n⟩, where

1n
represents the n-fold concatenation of 1.

Definition 8.1.1 (Bounded version)

Let L ⊆ Σ∗
be a language. A language

LB ⊆
{
⟨x, 1n⟩ | x ∈ Σ∗, n ∈ N

}
is called a bounded version of L if

(i) x ∈ L ⇐⇒ ∃n ∈ N : ⟨x, 1n⟩ ∈ LB.

(ii) ⟨x, 1n⟩ ∈ LB =⇒ ⟨x, 1n+1⟩ ∈ LB.

We shall often refer to L as the unbounded language of LB.
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First, note that the definition of bounded versions relies only on the

existence of a parameter n in the problem that acts accordingly. While

most problems we consider in this paper are RE-complete, Definition 8.1.1

applies to languages of arbitrary complexity. Moreover, note that the

bounding parameter can also be encoded differently. For example, if the

parameter is encoded in binary, most of the bounded version would

be NEXP-hard instead of NP-hard. Finally, we remark that the process

of bounding a language can be reversed. Given a language LB with

instances of the form ⟨x, 1n⟩ satisfying only Condition (ii), there is a

unique language L, defined via (i), which is the unbounded language of

LB.

Many problems mentioned in the introduction contain a parameter

that gives rise to a bounded version according to Definition 8.1.1. This

parameter can be the system size for tensor network and spectral gap

problems, or the dimension of the entangled state for quantum correlation

scenarios; we will present many such examples in Section 8.3.

As an example, let us consider the halting problem Halt with its known

bounded version BHalt. The former takes instances ⟨T, x0⟩ with a de-

scription T of a Turing machine and an input x0. An instance ⟨T, x0⟩ is
accepted if and only if the Turing machine T halts on x0. The bounded

halting problem takes instances ⟨T, x0, 1n⟩, which are accepted if and

only if the Turing machine halts on x0 within n computational steps.

BHalt is indeed a bounded version according to Definition 8.1.1 since

halting of a Turing machine is equivalent to the existence of a finite

halting time, and halting within n steps implies halting within n + 1
steps.

We remark that in Definition 8.1.1 there is some freedom in the choice

of the bounding parameter. For example, for every non-decreasing,

unbounded function f : N → N, the language

BHalt f :=
{
⟨T, x0, 1n⟩ | T halts on x0 in f (n) steps

}
is also a bounded version of Halt. In this paper, we will focus on the

simplest versions setting f = id in all examples.

8.1.2 Leveraging reductions to the bounded case

Given the hardness of the unbounded languages, what can we say about

the bounded ones? We will now give a condition to leverage a reduction

of unbounded problems to a reduction between the corresponding

bounded problems. This results in a method to prove hardness results

of many bounded versions of undecidable problems, as we will see in

Section 8.3.

Let LB be a bounded version of L ⊆ Σ∗
. For x ∈ Σ∗

, we define the

threshold parameter

nmin,L[x] := inf{n ∈ N : ⟨x, 1n⟩ ∈ LB}
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where we set inf ∅ = ∞. In other words, nmin[x] denotes the minimum

value of n leading to an accepting instance of LB. Note that

nmin[x] < ∞

for every x ∈ L due to (i) of Definition 8.1.1 and

nmin[x] = ∞

if x /∈ L. Moreover, ⟨x, 1n⟩ ∈ LB if and only if n ⩾ nmin[x] due to (ii) of

Definition 8.1.1.

Theorem 8.1.1 (Hardness of bounded versions)

Let L1, L2 ⊆ Σ∗
be two languages and R : L1 → L2 a polynomial-

time reduction
2

2: We refer to Definition 6.1.4 for the

notion of polynomial-time reductions.

from L1 to L2, i.e. L1 ⩽poly L2. Furthermore, let LB1
and LB2 be bounded versions of L1 and L2, respectively.

If there is a strictly increasing polynomial p : N → N such that

nmin,L2 [R(x)] ⩽ p
(
nmin,L1 [x]

)
(8.1)

for every x ∈ L, then

⟨x, 1n⟩ 7→ ⟨R(x), 1p(n)⟩ (8.2)

is a polynomial-time reduction from LB1 to LB2, hence LB1 ⩽poly LB2.

Theorem 8.1.1 also generalizes to other

types of reductions. For example, we

obtain an exponential-time reduction be-

tween the bounded versions when R is

considered a exponential-time reduction

and p being a strictly increasing func-

tion that can be computed in exponential

time.

Proof. Since R and p are polynomial-time maps, the map in Equation

(8.2) is also polynomial-time. It remains to show that yes/no-instances

are preserved via this map. We have that ⟨x, 1n⟩ ∈ LB1 if and only if

n ⩾ nmin,L1 [x]. This is equivalent toWe require that p is strictly increasing

instead of mere non-decreasing as we

need the equivalence of the statements

n ⩾ m and p(n) ⩾ p(m) in the proof.

p(n) ⩾ p
(
nmin,L1 [x]

)
⩾ nmin,L2 [R(x)]

since p is a strictly increasing function. But this is again equivalent to

⟨R(x), 1p(n)⟩ ∈ LB2.

In words, Condition (8.1) demands that there is a polynomial that relates

thresholds of x and R(x) for all x.

Many known reductions of undecidable problems implicitly contain

such a polynomial p in their construction. This gives an almost-for-free

proof of the NP-hardness of their bounded problems. However, most of

these works do not make this polynomial explicit and therefore do not

obtain the NP-hardness results. While the theorem only assumes that

p(nmin,L2 [x]) upper bounds nmin,L1 [R(x)], in all examples, we have an

equality between these expressions. In Section 8.3, we will present many

examples of this behavior.

8.2 Halting problems as root problems

The result of Theorem 8.1.1 gives only relative statements about hardness.

Specifically, it allows to construct a reduction between bounded versions
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given a reduction between their original problems. To prove NP/coNP-
hardness of bounded problems, we need root problems with bounded

versionswhose complexities are already known. In this section,we review

two fundamental undecidable problems and their bounded versions,

namely two variants of the halting problem.

While Halt and BHalt are the most basic versions of halting problems,

we need variations of the halting problem that take non-deterministic

Turing machines as inputs. This is due to the fact that, while Halt is

undecidable, BHalt is in P.3 Since we want to prove NP/coNP-hardness 3: An efficient algorithm to decide

BHalt is simply letting the the Turing

machine with description T run on a

universal Turing machine. Since the sim-

ulation only needs a polynomial-time

overhead, this procedure checkswhether

T halts within n steps after polynomially

many steps in the size of ⟨T, x0, 1n⟩.

of bounded problems, we need root problems with a NP/coNP-hard
bounded version to start the reduction from. Therefore, we introduce

two non-deterministic versions of Halt, called NHalt and NHaltAll,

with an NP-hard and a coNP-hard bounded version, respectively.

▶ The problem NHalt checks the halting of a non-deterministic

Turing machine on the empty tape. An instance is given by a

description of a non-deterministic Turing machine T, which is

accepted if and only if T halts on the empty tape
4
. Its bounded 4: In other words, it accepts if and only

if there is a computation path such that

T halts along this path.

version BNHalt takes instances ⟨T, 1n⟩ and accepts if and only

if T halts on the empty tape in at most n steps. The unbounded

problem is RE-hard since it contains the (deterministic) halting

problem on the empty tape, which is itself RE-hard. Its bounded
version BNHalt is NP-hard.

▶ The problem NHaltAll takes a description of a non-deterministic

Turing machines T as an instance, which is accepted if and only

if T halts on the empty tape along all computation paths. Its

bounded version BNHaltAll is given by instances ⟨T, 1n⟩ which

are accepted if and only if T halts on the empty tape within n
computational steps along all computation paths. The unbounded

problem is RE-hard, and the bounded version is coNP-hard.

NHalt will be the root problem to prove the hardness of the bounded

Post correspondence problem (Section 8.3.1) and the bounded matrix

mortality problem (Section 8.3.2). NHaltAll will be the root problem to

prove the hardness of the bounded Tiling problem (Section 8.3.7).

Let us now provide a detailed analysis of the two halting problems

NHalt and NHaltAll together with their bounded versions which act

as root problems. We start with the unbounded problems showing their

undecidability, and continue with their bounded version’s complexity.

Note that the inputs of NHalt and NHaltAll are just a Turing machines

T, as we ask whether T halts on the empty tape.

Definition 8.2.1 (Non-deterministic Halting problems)

Let T be a description of a non-deterministic Turing machine.

T ∈ NHalt :⇐⇒ T halts on the empty tape.

T ∈ NHaltAll :⇐⇒ T halts on the empty tape

along all paths.

Both problems are undecidable, as the following reduction from the

halting problem Halt shows.
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Theorem 8.2.1

NHalt and NHaltAll are RE-complete.

Proof. We prove RE-hardness only for NHalt, as the same argument

applies to NHaltAll. To this end, we provide a reduction from Halt.

Recall that Halt takes ⟨T, x0⟩ as input (where T is a description of a

deterministic Turing machine T, and x0 is an input) and accepts if and

only if T halts on x0.
5
The reduction transforms instance ⟨T, x0⟩ to a5: We refer to Section 6.1.2 for the defini-

tion of the (deterministic) halting prob-

lem Halt.

Turing machine T′ = R(⟨T, x0⟩) which first writes x0 on the tape, and

then does the same computation as T on the given input. By construction,

⟨T, x⟩ ∈ Halt if and only if T′ ∈ NHalt, i.e. R is a valid reduction.

That NHalt ∈ RE follows by taking the halting computation path as a

certificate, and a verifier that verifies the computation along the path.

That NHaltAll ∈ RE follows by taking the halting time as a certificate,

and a verifier that verifies that the computation halts along all paths

within this halting time.

Let us now consider the bounded versions BNHalt and BNHaltAll.

Since these problems have different complexities, we will treat them

separately.

Definition 8.2.2 (Bounded non-deterministic halting problem I)

Let T be a description of a non-deterministic Turing machine, and

n ∈ N.

⟨T, 1n⟩ ∈ BNHalt :⇐⇒ T halts on the empty tape

in n steps.

Theorem 8.2.2

BNHalt is NP-complete.

Proof. To show thatBNHalt isNP-hard,we prove that everyNP-language
L has a polynomial-time reduction to BNHalt. Since L is in NP, there
exists a non-deterministic polynomial-time Turing machine M which

accepts x within time p(|x|) if and only if x ∈ L. We construct a non-

deterministic Turing machine PM,x that (i) writes x on the tape, (ii) does

the same computation as M on the tapewith input x, and (iii) if M accepts

x along a path, PM,x halts along this path, and if M rejects x along a path,

PM,x loops along this path. Since step (i) needs a polynomial number

q(|x|) steps, and step (iii) needs a constant number k of steps, we have

that x ∈ L if and only if

⟨PM,x, 1q(|x|)+k+p(|x|)⟩ ∈ BNHalt.

Completeness follows from Definition 6.1.2 by choosing the halting

computation path as a certificate, and a polynomial-time verifier which

verifies the computation along this path.
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Similarly, we define the problem BNHaltAll as the language accepting

the instance ⟨T, 1n⟩ if and only if T halts on the empty tape along all
computation paths in at most n steps.

Definition 8.2.3 (Bounded non-deterministic halting problem II)

Let T be a description of a non-deterministic Turing machine T, and
n ∈ N.

⟨T, 1n⟩ ∈ BNHaltAll :⇐⇒ T halts on the empty tape

along all paths in n steps.

While NHalt and NHaltAll are in the same complexity class, their

bounded versions are in different ones.

Theorem 8.2.3

BNHaltAll is coNP-complete.

Proof. The hardness proof is very similar to Theorem 8.2.2. Namely,

we prove that every coNP-language L has a polynomial-time reduc-

tion to BNHaltAll. Since L is in coNP, there exists a non-deterministic

polynomial-time Turing machine M which accepts x along every compu-

tation path of length at most p(|x|) if and only if x ∈ L. We construct the

non-deterministic Turing machine PM,x which (i) writes x on the tape,

(ii) does the same computation as M on the tape with input x, and (iii) if

M accepts x along a path, PM,x halts along this path. If M rejects x along

a path, PM,x loops along this path. Since (i) needs a polynomial number

q(|x|) steps and (iii) needs a constant number k of steps, we have that

x ∈ L if and only if

⟨PM,x, 1q(|x|)+k+p(|x|)⟩ ∈ BNHaltAll.

Completeness again follows fromEquation (6.2) by choosing computation

paths as a certificate, and a polynomial-time verifier that verifies the

computation along the given path.

While reductions for undecidable problems usually stem from the deter-

ministic halting problem Halt, here we need non-deterministic halting

problems in order to prove NP-hardness of the bounded versions. Canon-

ical extensions of the reductions from Halt to a non-deterministic halting

problem lead to different choices of root problems. For example, the Post

correspondence problem has a similar structure as NHalt, while the

structure of the tiling problem relates to NHaltAll. We will elaborate

on these structures in the corresponding sections.

We expect that other variants of the halting problem serve as root prob-

lems for other complexity results; see Section 8.4 for further discussion.
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8.3 A tree of undecidable problems and their

bounded versions

In this section, we apply Theorem 8.1.1 to several undecidable problems

in order to prove the NP-hardness of the bounded versions. The problems

studied in this paper are summarized in Figure 8.2, where every edge

corresponds to one application of the theorem.

Figure 8.2: The problems and reduc-

tions considered in this work. NHalt

is the non-deterministic halting problem,

Pcp is the Post correspondence problem,

Reach is the reachability problem for re-

source theories, Zulc is the zero in the

upper left corner problem, Mm is the ma-

trix mortality problem, Mpo is the posi-

tivity of Matrix product operators prob-

lem, Tsp is the stability of positive maps

problem and Poly is the polynomial pos-

itivity problem. NHaltAll is the non-

deterministic halting problemon all com-

putational paths, Tile is the Wang tiling

problem, and Gse is the ground state

energy problem. NHalt and NHaltAll

are the root problems, and every arrow

corresponds to a reduction, explained in

the referenced subsection.

RE-hard problems

with NP-hard

bounded version

Sec. 8.3.1

Sec. 8.3.2

Sec. 8.3.2Sec. 8.3.3

Sec. 8.3.4Sec. 8.3.5

Sec. 8.3.6

NHalt

Pcp

Zulc

Mm

Reach

Mpo

PolyTsp

Sec. 8.3.7

Sec. 8.3.8

NHaltAll

Tile

Gse

RE-hard problems

with coNP-hard

bounded version

8.3.1 The Post correspondence problem

The Post correspondence problem (Pcp) [99] is an undecidable problem

with a particularly simple and intuitive formulation. For this reason,

it is often used to prove undecidable results in quantum information

theory [129], including a version of the matrix product operator positivity

problem [72], threshold-problems for probabilistic and quantum finite

automata [15], or reachability problems in resource theories [107]. It is

stated as follows:

Problem 8.3.1 (The Post correspondence problem)

Given two finite sets of words, {a1, . . . , ak} and {b1, . . . , bk} ⊆ Σ∗
,

is there a finite sequence of indices i1, . . . , iℓ such that

ai1 ai2 . . . aiℓ = bi1 bi2 . . . biℓ ?

This decision problem is known to be RE-complete via a reduction from

the halting problem. Since ai and bi only appear in fixed pairs, this

problem has an equivalent formulation in terms of dominoes

di =

[
ai
bi

]
.

The question is whether there exists a finite arrangement of dominoes

that form a match, i.e. where the upper and lower parts coincide when

the words are read across the dominoes (see Figure 8.3).

Instance

20

0

0

01

012

2

1

20

Match

0

01

1

20

20

0

0

01

012

2

Figure 8.3: An instance of Pcp is a set

of dominoes (top). This is a yes-instance

if they form a match (bottom), i.e. the

words on the top and the bottom coin-

cide.

We define a bounded version of Pcp that checks for sequences of length

at most n:
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Computation

1st
step 2nd

step

!

! ⋆ q0 ⋆ ␣ ⋆ ! ⋆

(a)

⋆ q0 ⋆ ␣

y0 ⋆ q1 ⋆

(b)

⋆ !

␣ ⋆ ! ⋆

(d)

⋆ y0

y0 ⋆

(c)

⋆ q1 ⋆ ␣

y1 ⋆ q2 ⋆

(b)

⋆ !

␣ ⋆ ! ⋆

(d)

kth step

· · ·
⋆ y0 ⋆ ... yi ⋆ q f ⋆ yi+1...yℓ ⋆ ! ⋆

⋆ y0

y0 ⋆
· · ·

⋆ yi ⋆ q f ⋆ yi+1

q f ⋆

⋆ yi+2

yi+2 ⋆
· · ·

⋆ !

␣ ⋆ ! ⋆

(c) (e) (c) (d)

· · ·
q f ⋆ ␣ ⋆ ! ⋆

⋆ q f ⋆ ␣ ! ⋆ !

!

(f)

Halting

procedure

Figure 8.4: (Top) In the reduction NHalt → Pcp, domino (a) contains the initial configuration of the TM, i.e. an empty tape with head at

position zero. Each computation step is simulated by copying the lower string to the upper part in green. This is done by applying a

transition domino (b), reproducing the tape (c), and adding a new empty tape slot (d). This generates a new string on the bottom, showing

the new instantaneous description (white). Repeating the procedure simulates the computation. (Bottom) The halting of the Turing

machine is mapped to the following match of tiles. When the Turing machine reaches the final state q f , the instantaneous description is

successively removed by dominoes (e). Adding a final domino (f) guarantees the match.

Problem 8.3.2 (The bounded Post correspondence problem)

Given a finite set of dominoes {d1, . . . , dk} and a number n ∈ N in

unary, is there a matching arrangement of dominoes di1 , . . . , diℓ with

ℓ ⩽ n?

This problem, denoted BPcp, is a bounded version of Pcp according to

Definition 8.1.1. It is known to be NP-complete (see [54, 67, 72] for the

ideas of the reductions). The basic idea of the reduction is analogous to

Theorem 8.1.1, i.e. using the reduction of the (unbounded) undecidable

problems to relate the bounding parameters via a polynomial-time map.

Yet, the usual reductions do not directly give rise to a polynomial relation

between the bounding parameters, contrary to what is claimed in [72].

Wewill now provide a reductionNHalt → Pcp leading to such a relation.

Our approach is similar to that of [115].

We define a mapRmapping a description of a Turing machine to a set of

dominoes, R(T) := ⟨d1, . . . , dk⟩. This map mimics the description of T
(see Figure 8.4). For example, d1 is a domino whose lower string is given

by

! ⋆ q0 ⋆ ␣ ⋆ ! ⋆

where ! and ⋆ are separator symbols, and q0 and ␣ indicate that the

Turing machine head is initially in state q0 acting on an empty tape.

Let us now provide the reduction NHalt → Pcp in greater detail. The

following reduction modifies that of Ref. [115], so that the bounding

parameters of both problems are polynomially related.

We consider a Turing machine given by a tape alphabet Σ with blank

symbol ␣ ∈ Σ, a state set Q with an initial state q0, final states F ⊆ Q,

and a transition function

δ : Σ × (Q \ F) → Σ × Q × {L, R}.

Without loss of generality, we consider here only semi-infinite tape Turing
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machines, i.e. having a tape with a left end but no right end. This is no

restriction for the complexity since semi-infinite tape Turing machines

are equivalent to standard Turing machines [2, Claim 1.4]. The set of

dominoes D is defined in Figure 8.5.

(i) An initial domino

!

! ⋆ q0 ⋆ ␣ ⋆ ! ⋆

(ii) For every x ∈ Σ, a copy domino

⋆ x

x ⋆

(iii) Transitions (q, x) 7→ (q̂, y, L)

⋆ x ⋆ q

q̂ ⋆ y ⋆

(iv) Transitions (q, x) 7→ (q̂, y, R)

⋆ q ⋆ x

y ⋆ q̂ ⋆

(v) A tape expander

⋆ !

␣ ⋆ ! ⋆

(vi) For every q f ∈ F, y1, y2 ∈ Σ

⋆ y1 ⋆ q f ⋆ y2

q f ⋆

(vii) For every q f ∈ F, y1, y2 ∈ Σ

⋆ q f ⋆ y1 ⋆ y2

q f ⋆

(viii) A final domino

⋆ q f ⋆ ␣ ⋆ ! ⋆ !

!

Figure 8.5: The necessary dominoes for

the reduction NHalt → PCP as well as

BNHalt → BPcp.

Note that the domino set D can be constructed in polynomial time from

T, and that |D| is polynomial in |Q| and |Σ|.

Let us now apply this reduction to a non-deterministic Turing machine,

as the bounded version needs the latter. First note that the exclamation

marks serve as a separator between the instantaneous descriptions of

different computation steps, while the grey star separates every symbol

in the string. The lower part of the initial domino (i) represents the initial

tape configuration of the Turing machine together with its current head

state and position. Since the initial domino (i) is the only domino whose

first upper and lower symbols coincide, every match has to start with

the initial domino. A computation step along some computation path is

simulated by applying copy-dominoes (ii), transition dominoes (iii), (iv),

and tape expanders (v), according to Figure 8.4. If a computation reaches a

final state q f , the final instantaneous description is successively removed

by applying dominoes (ii), (vi), (vii), and (v) according to Figure 8.4.

Finally, a match is obtained by adding (viii).

This implies that T halts on the empty tape along a computation path if

and only if D forms a match. Hence, R : NHalt → Pcp is a reduction. It

follows that Pcp is RE-hard.

Note that simulating the kth computation step by a domino arrangement

requires precisely k + 1 dominoes. When T reaches the final state after

n computation steps, the post-simulation procedure requires another

n + 1 repetitions, where each procedure needs precisely m = n + 1
arrangements with length starting with m and decreasing by 1. So T
halts after n computation steps on the empty tape if and only if the

corresponding domino set forms a match in at most

q(n) := 1 +
n∑

k=1

(k + 1) +
n+1∑
k=1

k = (n + 1) · (n + 2)

steps, where the first sum represents the computation procedure and the

second sum the post-simulation procedure. SinceR is a polynomial-time

reduction, using Theorem 8.1.1, this implies that

⟨T, 1n⟩ 7→ ⟨R(T), 1(n+1)·(n+2)⟩

is a polynomial-time reduction from BNHalt to BPcp, which shows that

BPcp is NP-hard.

The mapR is a polynomial-time map; in particular, the number of domi-

noes k is polynomial in the description size of T. From the construction

of R it follows that T halts on the empty tape if and only if there exists a

match of dominoes d1, . . . , dk. This implies that R is a polynomial-time

reduction from the non-deterministic halting problem, which implies

that Pcp is RE-hard.
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Refining this argument and using Theorem 8.1.1, we obtain that R can

be used as a reduction from BNHalt to BPcp. Each computation step of

T on the empty tape is simulated by attaching dominoes, as shown in

Figure 8.4. This procedure guarantees that T halts within n steps if and

only if d1, . . . , dk form a match within

p(n) := (n + 1) · (n + 2)

steps. Hence, the halting time of T is polynomially related to the length

of a minimal match of R(T). This proves that BPcp is NP-hard by

Theorem 8.1.1.

Moreover, Pcp is RE-complete and BPcp is NP-complete, by taking match-

ing domino arrangements as certificates, and a polynomial-time verifier

that checks arrangements.

8.3.2 The zero in the upper left corner and the matrix

mortality problem

We now present the matrix mortality problem (short Mm) and the zero in

the upper left corner problem (short Zulc) with their bounded versions.

Both problems are undecidable and have been applied to prove the

undecidability of quantum information problems such as the positivity of

Matrix product operators [36] (see Section 8.3.3), the reachability problem

[129] (see Section 8.3.6), or the measurement occurrence problem [46].

Problem 8.3.3 (The matrix mortality problem)

Given A1, . . . , Ak ∈ Matd(Q), is there a finite sequence i1, . . . , iℓ ∈
{1, . . . , k} such that

Ai1 · Ai2 · · · Aiℓ = 0 ?

Here, 0 denotes the zero matrix, and Matd(Q) the set of d × d matrices

over Q. Zulc is almost identical to Mm, the only difference is that only the

upper left corner of the product Ai1 · Ai2 · · · Aiℓ is asked to be zero. We

define the bounded matrix mortality problem (BMm) and the bounded

zero in the upper left corner problem (BZulc) by adding a parameter

n ∈ N to every instance, and asking whether the desired zeros can be

realized within n matrix multiplications.

The undecidability of Mm was first proven by Paterson [95]. Since then,

many tighter bounds on the number and size of matrices for both

problems have been found (see [24] and references therein). It is also

known that BMm is NP-hard [17]. However, the proof relies on a reduction

from the NP-complete problem SAT and is therefore independent of the

original reduction proving undecidability. To the best of our knowledge,

the following is the first proof of theNP-hardness of these boundedmatrix

problems using the same reductions as their unbounded versions.

We briefly sketch the reductions. Following [63], there exist polynomial-

time reductionsR : Pcp → Zulc andQ : Zulc → Mmwith the following

properties:
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(i) The dominoes d := ⟨d1, . . . , dk⟩ form a match of length n if and

only if the matrices

⟨N1, . . . , Nk′⟩ := R(d)

multiply to a matrix with a zero in the upper left corner within n
matrix multiplications.

(ii) Thematrices N := ⟨N1, . . . , Nℓ⟩ form a zero in the upper left corner

using n matrix multiplications if and only if the matrices

⟨M1, . . . , Mℓ′⟩ := Q(N)

multiply to a zero matrix within n + 2 matrix multiplications.

Together with Theorem 8.1.1, these observations show that

⟨x, 1n⟩ 7→ ⟨R(x), 1n⟩

is a polynomial-time reduction from BPcp to BZulc, and

⟨x, 1n⟩ 7→ ⟨Q(x), 1n+2⟩

is a polynomial-time reduction from BZulc to BMm. This proves that

BZulc and BMm are NP-hard.

The Reduction to the Zero-in-the-upper-left-corner problem

Let us now present the reduction R : Pcp → Zulc based on the ideas

of [63] in greater detail. For this purpose, we consider Pcp using strings

encoded in the alphabet Σ = {0, 1, 2}. We define the bĳection σ : Σ∗ →
N that assigns a representation in base 3 to every natural number, i.e.

σ(c1, . . . , cn) :=
n∑

i=1

ci · 3n−i.

Moreover, we define a function γ : Σ∗ × Σ∗ → N3×3
via

γ(w1, w2) :=

 3|w1| 0 0

0 3|w2| 0

σ(w1) σ(w2) 1

 .

The function γ is injective and a morphism, i.e. γ(w1u1, w2u2) =
γ(w1, w2) · γ(u1, u2)where composition on Σ∗

is given by concatenation

of words. Let

d1 =

[
a1

b1

]
, . . . , dk =

[
ak
bk

]
be an instance of Pcp where ai, bi ∈ Σ∗

. For i ∈ {1, . . . , k}, we define the

matrices

Ai = X · γ(ai, bi) · X−1 Bi = X · γ(ai, 0bi) · X−1
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with

X =

1 0 1

1 1 0

0 0 1

 .

We have that

di1 di2 · · · din

is a matching domino if and only if

(Mi1 · Mi2 · · · Min)11 = 0

where Mij ∈ {Aij , Bij}. We refer to [63] for details. This shows that

R : Pcp → Zulc with

R
(
⟨d1, . . . , dk⟩

)
:= ⟨A1, . . . , Ak, B1, . . . , Bk⟩

is a polynomial-time reduction. This implies that Zulc is RE-hard.

Since matches of length n are mapped to matrix multiplications of length

n with a zero in the upper left corner, this shows thatRb : BPcp → BZulc

with

Rb

(
⟨d1, . . . , dk, 1n⟩

)
:= ⟨A1, . . . , Ak, B1, . . . , Bk, 1n⟩

is a polynomial-time reduction. This implies that BZulc is NP-hard.

Note that thematrices in A1, . . . , Ak, B1, . . . , Bk are invertible, fromwhich

it follows thatZulc and BZulc remain RE-hard and NP-hard, respectively,
when restricting the instances to invertible matrices.

The Reduction to the Matrix Mortality problem

We now construct the reduction Q : Zulc → Mm following the ideas of

[63]. Since Zulc remains hard when restricting the instances to invertible

matrices, we constructQ only for invertible matrices. So let ⟨A1, . . . , Ak⟩
be an instance of invertible matrices in Zulc. We define

Q(⟨A1, . . . , Ak⟩) := ⟨A1, . . . , Ak, B⟩

with

B =

1 0 0

0 0 0

0 0 0

 .

We claim that A1, . . . , Ak forms a zero in the upper left corner if and

only if A1, . . . , Ak, B multiplies to a zero matrix. This proves that Mm is

RE-hard. Moreover, we show that

nmin,Mm
[⟨A, B⟩] = nmin,Zulc

[⟨A⟩] + 2. (8.3)

where A represents the list A1, . . . , Ak.

To prove the claim, first note that if

(Ai1 · Ai2 · · · Ain)11 = 0,



152 8 Bounded versions of undecidable problems

then

B · Ai1 · Ai2 · · · Ain · B = (Ai1 · Ai2 · · · Ain)11 = 0.

In other words, a yes-instance of Zulc with parameter n is mapped to a

yes-instance in Mm with parameter n + 2. This proves the inequality “⩽”

of Equation (8.3).

Conversely, assume that there exists a sequenceofnmatrices in {A1, . . . Ak, B}
that multiplies to 0. Since A1, . . . , Ak are invertible and B has rank 1, this
sequence must contain B at least twice. The product is of the form

M1BM2BM3B · · · BMr = 0

where Mi is a multiplication of ℓi matrices in {A1, . . . , Ak} for some ℓi.
6

6: If it is an empty multiplication (i.e.

ℓi = 0), thenwe define Mi as the identity

matrix.

Since B is idempotent, we have that

0 =
(

M1BM2BM3B · · · BMr
)

11

=
(
BM1B2M2B2M3B2 · · · B2MrB

)
11

=
(

M1
)

11 · · ·
(

Mr
)

11.

This implies that at least one of the matrices Mi has a zero in the upper

left corner, which shows that A1, . . . , Ak form a zero in the upper left

corner with a word of length n. Specifically, any minimal sequence of

matrices realizing 0 must be of the form

B · Ai1 · Ai2 · · · Ain · B = 0.

Note that a shorter such product cannot exist because it would violate

the proven inequality “⩽” of Equation (8.3). This representation proves

the inequality “⩾” of Equation (8.3), since

(Ai1 · Ai2 · · · Ain)11 = 0.

In summary, Q : Zulc → Mm is a reduction, which proves that Mm is

RE-hard. Moreover, Qb : BZulc → BMm with

Qb : ⟨A1, . . . , Ak, 1n⟩ 7→ ⟨A1, . . . , Ak, B, 1n+2⟩

is a polynomial-time reduction too, which proves that BMm is NP-hard.

Let us finally note that Mm and Zulc are RE-complete, and their bounded

versions, BMm and BZulc, are NP-complete by taking matching matrix

arrangements as certificates and a polynomial-time verifier checking the

statements.

8.3.3 The matrix product operator positivity problem

AMatrix Product operator (MPO) representation is a decomposition of a

multipartite operator into local tensors according to a one-dimensional

structure (see Section 2.3.5). A local tensor B defines a diagonal operator

ρn(B) for every system size n (see Figure 8.6). More precisely, given a

family of D × D matrices (Bi) for i ∈ {1, . . . , d}, the diagonal ti MPO of
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size n is given by

ρn(B) :=
d∑

j1,...,jn=1

tr
(
Bj1 · · · Bjn

)
|j1, . . . , jn⟩ ⟨j1, . . . , jn| .

B[1]

j1

j1

α2
B[2]

j2

j2

α3

α1

· · · B[n]

jn

jn

αn

Figure 8.6: Tensor network representa-

tion of the MPO ρn(B). The MPO prob-

lem asks: Given a tensor B, is ρn(B) psd
for all n? Note that in this setting the

tensors B have only one open index in

contrast to Figure 2.11.

If these MPO should represent density matrices, then B should be

such that ρn(B) is psd for every n. This property cannot be decided

algorithmically, not even for classical states. In other words, the following

Mpo problem is undecidable:

Problem 8.3.4 (The MPO positivity problem)

Given B1, . . . , Bk ∈ MatD(Q), is there n ∈ N such that ρn(B) is not
psd?

Note that anMPO is usually definedmore generally; instead of restricting

to families of diagonal (classical) matrices Bi, a general matrix product

operator is defined via families of D × D matrices (Bi,j) for i, j = 1, . . . , d,
addressing also non-diagonal entries of the matrix. However, as diagonal

MPOs are contained in this definition, the undecidability of Mpo as we

defined it implies that the same problem for arbitrary matrix product

operators is also undecidable.

Similar to previous bounded versions, we define BMpo by bounding the

system size n:

Problem 8.3.5 (The bounded MPO positivity problem)

Given B1, . . . , Bk and n ∈ N, is there an ℓ ⩽ n such that ρℓ(B) is not
psd?

Note that Mpo is usually stated in the negated way; yet, we use this

definition for consistency with the definition of bounding.

Let us now present a reduction R : Zulc → Mpo, slightly different than

[36]. The Mpo problem has as input a fixed number of D × D integer

matrices ⟨Bi : i ∈ {1, . . . , k}⟩ and asks whether there exists a natural

number n ∈ N such that

ρn(B) :=
k∑

i1,...,in=1

tr
(
Bi1 · · · Bin

)
|i1 . . . in⟩ ⟨i1 . . . in|

is not psd. We define

R(⟨A1, . . . , Ak⟩) = ⟨B1, . . . , Bk, Bk+1⟩

where for i ∈ {1, . . . , k}

Bi :=

(
Ai ⊗ Ai 0

0 1

)

and

Bk+1 :=

(
E11 0

0 −1

)
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where E11 := |1⟩ ⟨1| with |1⟩ = (1, 0, . . . , 0)t
of length D.

We now prove that the threshold parameter n in BZulc maps to the

threshold parameter n + 1 in BMpo. Let Ai1 , . . . , Ain be the minimal

sequence such that (
Ai1 · Ai2 · · · Ain

)
11 = 0.

Then,

tr(Bi1 · · · Bin · Bk+1) =
(

Ai1 · Ai2 · · · Ain
)2

11 − 1 < 0.

Conversely, let Bi1 , . . . , Bin+1 be a minimal sequence such that

tr(Bi1 · Bi2 · · · Bin+1) < 0.

The indices i1, . . . , in+1 cannot be chosen exclusively from {1, . . . , k},
since in that case

tr(Bi1 · Bi2 · · · Bin+1) =
(

tr(Ai1 · · · Ain+1)
)2

+ 1 ⩾ 0.

Hence, there is at least one index iℓ = k+ 1. Assume that there is precisely

one index k + 1. Without loss of generality, we assume in+1 = k + 1 due

to cyclicity of the trace. This leads to

0 > tr(Bi1 · Bi2 · · · Bin+1) =
( (

Ai1 · Ai2 · · · Ain
)

11

)2 − 1

which implies that

(
Ai1 · Ai2 · · · Ain

)
11 = 0 because the entries are

integer. This shows that a threshold parameter n + 1 in BMpo maps to

a threshold parameter of a most n in BZulc. Note that having multiple

indices with k + 1 leads to a smaller threshold parameter in BZulc which

contradicts the minimality assumption of Bi1 , . . . , Bin+1 . This proves the

statement.

This reduction can easily be extended to matrices with rational num-

bers.

In summary, R : Zulc → Mpo is a reduction, which proves that Mpo is

RE-hard. Moreover, by Theorem 8.1.1, Rb : BZulc → BMpo with

Rb : ⟨A1, . . . , Ak, 1n⟩ 7→ ⟨B1, . . . , Bk, Bk+1, 1n+1⟩

is a polynomial-time reduction too, which proves that BMpo isNP-hard.

Moreover, Mpo is RE-complete and BMpo is NP-complete by defining

negative diagonal entries as certificates.

While Mpo precisely characterizes psd matrix product operators, in

practice, algorithms distinguishing MPOs that are sufficiently positive or

that violate positivity by at least an error ε > 0 are often acceptable. This

is the idea behind weak membership problems. Along these lines, we

define the approximate Mpo problem Mpoε as follows:

Problem 8.3.6 (The approximate positivity problem for MPO)

Given C1, . . . , Ck ∈ MatD(Q) with tr(ρℓ(C)) ⩽ 1 for every ℓ ∈ N

and a family of errors (εℓ)ℓ∈N with 0 < εℓ ⩽ 1/ exp(ℓ). Decide the
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following:

(a) Accept if ∃n ∈ N : ρn(C) + εn1 is not psd.

(b) Reject if ∀n ∈ N : ρn(C)− εn1 is psd.

Mpoε is undecidable using the same reduction as above and the fact that

tr(ρn(C)) increases exponentially in n in the above reduction. Following

the usual bounding process, we define BMpoε by bounding n:

Problem 8.3.7 (The bounded approximate positivity problem for

MPO)

Given C1, . . . , Ck ∈ MatD(Q) with tr(ρℓ(C)) ⩽ 1 for every ℓ ∈ N,

a family of errors (εℓ)ℓ∈N with 0 < εℓ ⩽ 1/ exp(ℓ) and n ∈ N.

Decide the following:

(a) Accept if ∃ℓ ⩽ n : ρℓ(C) + εn1 is not psd.

(b) Reject if ∀ℓ ⩽ n : ρℓ(C)− εn1 is psd.

It follows that BMpoε is a bounded version of Mpoε according to Defini-

tion 8.1.1. Moreover, Theorem 8.1.1 implies that BMpoε is also NP-hard.

We remark that Kliesch et al. [72] present a similar idea, by constructing a

reduction from Pcp to an alternative version of Mpo and bounding both

problems.

8.3.4 The polynomial positivity problem

The undecidability of Mpo leads to the undecidability of other positivity

problems. One of them concerns deciding the positivity of a certain class

of polynomials (see Section 7.3.3 and [39]):

Problem 8.3.8 (Polynomial positivity problem)

Given a family of polynomials qα,β(x) for α, β ∈ {1, . . . , D} with

integer coefficients, is there an n ∈ N such that the polynomial

pn(x[1], . . . , x[n]) :=
D∑

α1,...,αn=1

qα1,α2(x
[1]) · · · qαn ,α1(x

[n]) (8.4)

is not nonnegative (i.e. pn(a) < 0 for some a ∈ Rd·n
)?

Here x[i] denotes a d-tuple of variables, for every i. We define this problem

as Poly and its bounded version (by restricting to checking nonnegativity

of pk for k ⩽ n) by BPoly.

We have that Poly is RE-hard by Theorem 7.3.8. Following the proof of

Theorem 7.3.8, there exists a polynomial-time map

R(⟨B1, . . . , Bk⟩) :=
〈
qα,β : α, β = 1, . . . , D

〉
such that

ρn(B) ⩾ 0 if and only if pn is nonnegative.
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This implies that ⟨B, 1n⟩ 7→ ⟨R(B), 1n⟩ defines a reduction from BMpo

to BPoly. It follows that BPoly is NP-hard.

Moreover, the threshold n for BMpo is mapped to the threshold n for

BPoly. It follows that BPoly is NP-hard. Hence, BPoly is NP-complete

by taking an arrangement of the matrices leading to a negative value

as a certificate, and a polynomial-time verification procedure of this

statement as a verifier.

8.3.5 Stability of positive maps

Another undecidable problem related to positivity concerns tensor prod-

ucts of positive maps. A map

P : Matd(C) → Matd(C)

is called positive if it maps psd matrices to psd matrices. Such a map is

called n-tensor-stable positive if P⊗n
is a positive map, and tensor-stable

positive if it is n-tensor-stable positive for all n ∈ N. The existence of

non-trivial tensor-stable positive maps relates to the existence of NPT

bound-entangled states [87].

Let us define the n-fold Matrix Multiplication tensor
7
as7: We refer to Section 2.3.4 for its rela-

tion to the structure tensors on weighted

simplicial complexes.

|χn⟩ :=
s∑

α1,...,αn=1

|α1, α2⟩ ⊗ |α2, α3⟩ ⊗ · · · ⊗ |αn, α1⟩

and denote the projection to this vector by

χn := |χn⟩ ⟨χn| . (8.5)

The following problem is undecidable [48]:

Problem 8.3.9 (Positivity on a state problem)

Given a positive map P : Matd(C) → Matd(C), is P⊗n(χn) not psd
for some n ∈ N?

We denote this problem by Tsp. Its bounded version, BTsp takes instances

⟨P , 1n⟩ and asks the same question for k-fold tensor products with

k ⩽ n.

Let us now review the reduction R : Mpo → Tsp of [48], which proves

thatTsp isRE-hard. The same reduction also yields thatBTsp isNP-hard.

We map an instance

⟨B1, . . . , Bk⟩ ∈ MatD2(Q) ∼= MatD(Q)⊗ MatD(Q)

of Mpo to a linear map

P : MatD(Q)⊗ MatD(Q) → Matk(Q)

X 7→
k∑

i=1

|i⟩ ⟨i| tr(CiX)
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where

(Ci)(α1,α2),(β1,β2)
:= (Bi)(α1,β1),(α2,β2)

with α1, α2, β1, β2 ∈ {1, . . . , D}. Then, we have that

tr
(

Ci1 ⊗ · · · ⊗ Cin χn

)
= tr(Bi1 · · · Bin)

where χn is defined in (8.5). By construction, this implies that

P⊗n(χn) = ρn(B).

In summary, ⟨B1, . . . , Bk⟩ ∈ Mpo if and only if exists n ∈ N such that

P⊗n(χn) is not psd. Furthermore, the threshold parameters in both

problems coincide for this reduction. It follows that BTsp is NP-hard.

8.3.6 The reachability problem in quantum information

The reachability problem in quantum information concerns the question

whether a resource state ρ (given as a density matrix) can be converted

to another state σ by using only free resource operations from a fixed set

F := {Φ1, . . . , Φk}. More precisely, we define Reach as follows:

Problem 8.3.10 (Reachability in resource theories)

Given densitymatrices ρ, σ ∈ Matd(C) and a setF of free operations

Matd(C) → Matd(C), is there a map

Φ := Φin ◦ Φin−1 ◦ · · · ◦ Φi1

in the free semigroup F ∗
such that σ = Φ(ρ)?

The free semigroup F ∗
of F consists of all maps generated by finite

compositions of maps in F . We denote by Fn
the set of all operations

arising from at most n compositions of maps in F , and define the

bounded version BReach by replacing F ∗
with Fn

in the above problem

statement.

Reach is undecidable via a reduction from Pcp [107]. We now prove that

the bounded version BReach is NP-hard. We rely on Scandi and Surace’s

work [107], who provide a polynomial-time reduction R mapping domi-

noes di to two types of resource maps Hλ
i , Gλ

i for λ ∈ (0, 1). The set of
free resource operations is then specified by

F =
{
1, Hλ

i , Gλ
i : i = 1, . . . , r and λ ∈ (0, 1)

}
.

For a state ρ ∈ Mat4(C), it is shown that

σ := λρ + (1 − λ)
1

4

is reachable via operations in F ∗
if and only if there exists a match of

the corresponding dominoes in Pcp. This shows that Reach is RE-hard.
More specifically, there exists a match of length n if and only if

σ = Gλn
in ◦ · · · ◦ Gλ1

i1
◦ Hλ1

i1
◦ · · · ◦ Hλn

in (ρ)
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for a choice λ1, . . . , λn ∈ (0, 1). In other words, a threshold parameter n
in BPcp is mapped to a threshold 2n in BReach. This proves that BReach

is NP-hard by applying Theorem 8.1.1.

8.3.7 The tiling problem

Let us now consider the Wang tiling problem. This problem has been

used to prove undecidability in many physics-related problems, like

the spectral gap problem in 2D [34], 2D PEPS problems [108], or the

universality of translational invariant, classical spin Hamiltonians in 2D

[75].

Instance

Valid tiling

Figure 8.7: An instance of Tile is a set of

tiles (top). A set of tiles is a yes-instance

if there exists a valid tiling of the plane.

Part of a potentially valid tiling is shown

on the right. In a valid tiling, the colors

of adjacent tiles must coincide and the

tiles cannot be rotated.

A tile is given by a square with different colors on each side of the tile

(see Figure 8.8). Given a finite set of tiles, a valid tiling is an arrangement

of tiles whose adjacent edges coincide. Moreover, all tiles have a fixed

orientation, i.e. they cannot rotate. We study the following variant:

Problem 8.3.11 (The tiling problem)

Given a set of tiles T = {t1, . . . , tk}, is it impossible to tile the plane

when t1 is in the origin?

Note that this problem is usually stated in the negated form, but this

formulation is more convenient for our purposes. The constraint on the

fixed tile in the origin can also be removed [11, 104]; we stick to this version

for simplicity. The corresponding bounded version is the following:

Problem 8.3.12

Given a set of tiles T = {t1, . . . , tk} and n ∈ N, is it impossible to

tile Z2
n when t1 is in the origin?

Here we denote by Z2
n := {−n, . . . , 0, . . . , n}2

the square grid of size

(2n + 1)× (2n + 1) around the origin.

Let us now sketch the proof that Tile is RE-hard and that BTile is coNP-
hard. This will imply that the tiling problem in its usual formulation (“can

the plane be tiled?”) is coRE-hard and its bounded version is NP-hard.

In contrast to the previous examples, we now construct a reduction from

NHaltAll instead of NHalt. While to check whether {d1, . . . , dk} is a

yes-instance of BPcp, one needs to find a single matching arrangement,

to verify whether {t1, . . . , tk} is a yes-instance of BTile one has to check

(for a fixed size n) whether all arrangements of tiles in Z2
n are invalid.

This structure is similar to NHaltAll, where for a fixed computation

time n, one needs to check whether a given Turing machine T halts

on all computation steps. More precisely, there is a polynomial relation

between the bounding parameters of BTile and BNHaltAll, as needed

for Theorem 8.1.1.

␣␣q0 ␣␣

si

qj

qj ␣ ␣␣

qk

qksℓ qr ␣␣

Instantaneous description

of the computation

T
i
m
e

Figure 8.8: In the reduction

NHaltAll → Tile, the instanta-

neous description of the Turing machine

is mapped to a horizontal configuration

of tiles, and every computational step is

mapped to a valid tiling of the horizontal

line above. The green tile is fixed at the

origin, while the orange tiles realize the

computation. The rest of the plane is

filled with trivial tiles, such as the empty

tiles (bottom) or tiles copying the tape

information (left and right). A Turing

machine halts along every path within n
steps if and only if the corresponding

tiling terminates after n horizontal lines.

We build a polynomial-time reduction from NHaltAll to Tile following

[104]. The reduction maps a description of a Turing machine T to a set of

tiles representing either a slot in the tape or a computational step. The

(infinite) starting tape is mapped to the fixed origin tile representing the

empty tapewith headposition at zero. Fillingup anew line corresponds to
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one computational step. This reduction also applies to non-deterministic

Turing machines.

The reduction is such that the tiling cannot be continued after filling up

n lines if and only if T halts on all computation paths after at most n
computational steps, see Figure 8.8. This proves that Tile is undecidable.

By Theorem 8.1.1, we obtain that BTile is coNP-hard, since the maximal

halting time n on every computation path is mapped to the termination

size n + 1.

In addition, Tile is RE-complete by taking a system size where all tilings

terminate as a certificate and an exponential-time verifier checking

all tilings of this size. BTile is coNP-complete by choosing tilings as

a certificate and a polynomial-time verifier checking the validity of

the tiling. This highlights that when proving completeness, not every
construction in the unbounded case trivially translates to the bounded

version.

Let us now review the reduction R : Halt → Tile from [104]. A Turing

machine, consisting of a tape alphabet Σ with blank symbol ␣ ∈ Σ, a
state set Q with an initial state q0 and final states F ⊆ Q, and a transition

function

δ : Σ × (Q \ F) → Σ × Q × {L, R}

is mapped to the set of tiles shown in Figure 8.9.

This set of tiles captures the computation of a Turing machine on the

empty tape when placing the initial tile to the origin (see Figure 8.8). The

initial tile can only be extended to the left and to the right with the empty

tape extension. We can also trivially tile the whole lower half of the plane

by applying the empty tile.

The generated string

. . . ␣ ␣ ␣ q0 ␣ ␣ ␣ ␣ . . .

(i) Initial tile

q0 ␣

(ii) Empty tape extension

␣

and

␣

(iii) Empty tile

(iv) Trans. (x, q) 7→ (x′, q̂, R)

qx

x′

q̂

(v) Trans. (x, q) 7→ (x′, q̂, L)

qx

x′

q̂

(vi) State merge

y

q̂y

q̂
and

y

q̂y

q̂

(vii) Copy tile for x ∈ Σ
x

x

Figure 8.9: The necessary tiles for the re-

duction NHaltAll → Tile. State merge

is defined for every y ∈ Σ and q̂ ∈ Q,

whereas transitions are defined for every

such transition δ.

at the top of the first line represents the instantaneous description of the

Turingmachine at time 0, namely an empty tape with the head at position

0 and state q0. Simulating one step of the Turing machine corresponds to

filling up the line above of the current one. Specifically, on the top of the

initial tile, we need to place a transition tile (q0, ␣) 7→ (q̂, x, L/R). Then
we need to place a state merge tile on the left/right of the transition tile.

This reflects the movement of the head to the left or right. The rest of the

line is filled with copy tiles.

Again, the string at the top of the second line represents the initial

description after one computation step. The same procedure applies to

every computation step. As soon as we apply a transition tile (q, x) 7→
(q f , y, L/R) for some final state q f ∈ F, there is no tile to continue the

tiling procedure. In other words, every tiling procedure terminates in

line n if and only if T halts on the empty tape.

The same reduction applies to non-deterministic Turing machines. In this

situation, every tiling procedure terminates in n lines if and only if the

Turing machine halts on the empty tape along every computation path

in at most n steps. In other words, a Turing machine T halts on every

path in at most n steps if and only if Zn+1 × Zn+1 cannot be tiled. This
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proves that R : NHaltAll → Tile is a reduction. It follows that Tile is

RE-hard.

Moreover, R is a polynomial-time map. Since the map between the

threshold parameters of NHaltAll and Tile is given by n 7→ n + 1,

⟨x, 1n⟩ 7→ ⟨R(x), 1n+1⟩

is a reduction from BNHaltAll to BTile. This implies that BTile is

coNP-hard.

8.3.8 Ground state energy problem

We now study a version of the ground state energy problem. For this

purpose, we consider a spin system on a 2D grid. We assume that every

spin takes values in a setS . Given coupling functions hx, hy : S ×S → N

and a local field hloc : S → N, we define the Hamiltonian

Hn(s) = hloc(s00) +
∑
⟨a,b⟩x

hx(sa, s
b
) +

∑
⟨a,b⟩y

hy(sa, s
b
)

where s = (sij)i,j∈{−n,...,0,...,n} is a given spin configuration on the grid

Z2
n taking values in S and sa, sb denote the elements with coordinates

a and b in this array. Moreover, ⟨a, b⟩x/y denotes all neighbors in x/y-
direction on Z2

n where the a has a smaller x/y-coordinate than b. Hence,

Hn is translational invariant except for the local field on the spin in the

origin.

We start by defining the bounded version of this problem, namely the

bounded ground state energy problem BGse:

Problem 8.3.13 (The bounded ground state energy problem)

Given system size n ∈ N, non-negative functions hx, hy
, hloc and

energy E ∈ Q, is the ground state energy Emin(Hn) > E?

A function h is non-negative if it is non-negative on itswhole domain.Note

that BGse is indeed a bounded version, as Emin(Hn+1) ⩾ Emin(Hn) > E
since all couplings are non-negative. Further note that BGse is usually

formulated in the negated way, i.e. the question is if there exists a spin

configuration whose energy is below the threshold E.

We now extend BGse to an unbounded ground state energy problem

Gse:

Problem 8.3.14 (The (unbounded) ground state energy problem)

Given non-negative functions hx, hy, hloc and an energy E ∈ Q, is there
an n ∈ N such that Emin(Hn) > E?

Note that BGse is the bounded version of Gse according to Defini-

tion 8.1.1.

Let us show that Gse is RE-hard and BGse is coNP-hard by a reduction

R : Tile → Gse (see Figure 8.10). Given a set of tiles T = {t1, . . . , tk},
we define the set of spin states as the set of tiles S := T . Since each tile
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(a) ti = ( , , , )

(b)

t1 t1 t3 t2

t3 t4 t4 t3

t1 t4 t2 t4

t4 t4 t4 t1
Figure 8.10: In the reduction Tile → Gse,

(a) every tile ti is mapped to a spin state

si . (b) Every (valid and invalid) tiling

maps to a spin configuration. A tiling of

size n is valid iff the corresponding spin

configuration is the ground state of Hn
with energy 0.

is specified by four colors in a color space C, it can be represented as a

4-tuple
ti =

(
tN
i , tE

i , tS
i , tW

i

)
where the entries represent the colors on the top, right, bottom, and

left of the tile. We define the coupling function so that a valid tiling

with t1 in the origin maps to a spin configuration of energy 0, and every

inconsistent color pairing in an invalid tiling gives an additional energy

penalty of 1. More precisely,

hx(s, ŝ) := 1 − δ(sE, ŝW) and hy(s, ŝ) := 1 − δ(sN , ŝS).

where s, ŝ ∈ S . According the definition of Hn, the first component of

hx
addresses the spin on the left and the second the spin on the right

while the first component of hy
addresses the spin on the bottom and the

second the spin on the top. Moreover, we define

hloc(s) := 1 − δ(s, t1).

Note that Hn has a ground state of energy zero if and only if there exists

a valid tiling of Z2
n with tile t1 at the origin. That is, Emin(Hn) > 0 if

and only if there is no valid tiling of size n. This guarantees that R is a

reduction. Additionally, we obtain a reduction from BTile to BGse since

the bounding parameters are identical. Similar to the tiling problem, one

can show that Gse is RE-complete and BGse is coNP-complete.

Note that non-translational invariant versions of BGse are known to

be coNP-hard since their negated versions are NP-hard. In particular,

the ground state energy problem for 2D Ising models with fields is

NP-complete [4].

8.4 Conclusions and outlook

In this work, we have shown a relation between the hardness of an (un-

bounded) problem and the hardness of its bounded version. In particular,

we have defined a bounded version of a language (Definition 8.1.1) and

given a condition under which a reduction between the unbounded

problems translates to a reduction between their bounded versions (The-

orem 8.1.1). We have also applied this result to two classes of examples

(Section 8.3): First, we showed that RE-hard problems like Pcp, Mpo,

or Reach have an NP-hard bounded version; Second, we showed that

RE-hard problems like Tile and Gse have a coNP-hard bounded version.
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It would be interesting to extend this work to problems in quantum

physics such as the spectral gap problem [34, 8] or membership problems

for quantum correlations [116, 117, 70, 53, 86]. A bounded version of

the latter uses the dimension of the entangled state as the bounding

parameter.

Another open question is whether the undecidability of Diophantine

equations [83] and the NP-hardness of its bounded version [81] fits into

our framework.
8
In this context, the unbounded problem is as follows:8: Recall that a Diophantine equation is

a polynomial over the integers whose

solutions need to be integers.

Problem 8.4.1 (Solvability of Diophantine equations)

Given a Diophantine equation p(x, y) = 0 with 2k variables, and

a k-tuple of integers a ∈ Zk
, does there exist b ∈ Zk

such that

p(a, b) = 0?

Note that here k is fixed. The bounded version would restrict to values

b ∈ {−n, . . . , n}k
, where n acts as the bounding parameter.

Are there also hard bounded versions with other types of complexity,

such as QMA-hard [127] bounded versions?While we only considered the

scenario of RE-hard problemswith either NP-hard or coNP-hard bounded

versions, there might be “root problems” whose bounded version is

neitherNP-hard or coNP-hard.Natural candidates forQMA-hard bounded

version are the bounded/unbounded satisfiability problems of quantum

circuits [21], which concerns Turing machines generating polynomial-

size quantum circuits. The results of this work would imply that certain

QMA-hard problems, like the ground state energy problem for k-local
quantum Hamiltonians [71], relate to unbounded problems which are

undecidable.

Finally, is it possible to prove the converse direction of Theorem 8.1.1?

Since bounded languages give rise to a unique unbounded language,

can every reduction between bounded versions be transferred to a

reduction between the corresponding unbounded problems? If the

bounded reduction is of the special form

Rb : ⟨x, n⟩ 7→ ⟨R(x), p(n)⟩

with p being a strictly increasing polynomial, then R is automatically a

reduction between the unbounded problems. Yet, the question is open

for general Rb.
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List of notations

The next list describes several symbols that are used within the body of the document.

BGse The bounded ground state energy problem.

BHalt The bounded halting problem.

BMm The bounded matrix mortality problem.

BMpo The bounded positivity problem for matrix product operators.

BNHalt The bounded non-deterministic halting problem.

BNHaltAll The bounded version of NHaltAll.

BPcp The bounded Post correspondence problem.

BPoly The bounded polynomial positivity problem.

BReach The bounded reachability problem in resource theories.

BTsp The bounded positivity on a state problem

BTile The bounded tiling problem

BZulc The bounded zero-in-the-upper-left-corner problem.

coNP The complement of NP.

deg(p) The degree of the polynomial p.

deg
loc
(p) The local degree of the polynomial p.

Gse The (unbounded) ground state energy problem.

Halt The halting problem.

Herd(C) The set of d × d complex hermitian matrices.

Pcp The Post correspondence problem.

Matd(K) The set of d × d matrices with elements from K.

Matd,k(K) The set of d × k matrices with elements from K.

Q[i] The field of complex numbers with rational real and imaginary parts.

Os(K) The group of orthogonal matrices over the field K.

Us(K) The group of unitary matrices over the field K.

Mm The matrix mortality problem.

Mpo The positivity problem for matrix product operators.

NHalt The non-deterministic halting problem.



NHaltAll The non-deterministic halting problem on all paths.

nn-rank The nonnegative rank.

NP The set of non-deterministic polynomial-time decidable languages.

P The set of polynomial-time decidable languages.

Poly The polynomial positivity problem.

Psdd(C) The set of d × d positive semidefinite matrices.

psd-rank The positive semidefinite rank.

puri-rank The purification rank.

R The set of recursive (decidable) languages.

rank The (unconstrained) rank.

RE The set of co-recursively enumerable languages.

RE The set of recursively enumerable languages.

Reach The reachability problem in resource theories.

sep-rank The separable rank.

sos-rank The sum-of-squares rank.

Tsp The positivity on a state problem.

Tile The tiling problem.

Zulc The zero-in-the-upper-left-corner problem.

A ≽ 0 The matrix A is positive semidefinite.

At
The transpose of a matrix A.

A†
The Hermitian transpose of a matrix A.

[n] The set {1, . . . , n}.

Λn The line with n vertices.

N+ The set of positive natural numbers {1, 2, 3, . . .}.

Σn The simplex with n vertices.

Θn The cycle with n vertices.

Cn The cyclic group with n elements.

Sn The full permutation group on n elements.



List of abbreviations

cp completely positive.

cpsd completely positive semidefinite.

cpsdt completely positive semidefinite transpose.

cptp completely positive trace preserving.

LPDO locally purified density operator.

LRS linear recurrence sequence.

MaMu matrix multiplication.

MPDO matrix product density operator.

MPO matrix product operator.

MPS matrix product state.

POVM positive operator-valued measurement.

psd positive semidefinite.

sos sum-of-squares.

ti translational invariant.

WSC weighted simplicial complex.
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