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Approximate tensor decompositions: disappearance of many separations

by Andreas KLINGLER

The field of tensor decompositions and matrix factorizations has become very popular
in recent years since it has a wide range of applications in the description of complex
systems. Although natural matrix factorizations are quite well understood, there are a
lot of open questions in the field of matrix decompositions with additional restrictions.
The picture is similar to the area of tensor decompositions. In this thesis, we will
introduce different well-known notions of decompositions and factorizations and
their corresponding ranks, which denote the number of necessary summands. We
will extend this concept to a very general framework of tensor decompositions based
on simplicial complexes with which we will study relations between the introduced
ranks. It is shown that there exist separations between the different notions, namely
one can be arbitrarily much larger than the other. For this purpose, we will introduce
an idea of approximate ranks again based on simplicial complexes. We will define
them as the minimal (exact) rank attained in the ε-neighborhood of the investigated
element. We will study this concept on the tensor product space of matrices and the
tensor product space of vectors using the Schatten p-norm and the entrywise p-norm,
respectively. We will show that many separations between the ranks will disappear
in the approximate case. This work opens, for example, the door to effective and
useful descriptions of mixed states which is a critical issue in many applications.
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1

Introduction

Many descriptions of complex systems, such as quantum systems, suffer from the
problem that the number of parameters increases exponentially with the system size.
This immense growth of complexity is one of the main limiting factors in the classical
simulation of such systems. It hinders the theoretical understanding of processes
like high-temperature superconductivity or studies of complex models like the 2-
dimensional Hubbard model [31]. The mathematical framework describing these
systems are mainly matrices and tensors, and various decompositions of these objects
lead to efficient descriptions.

In the study of matrices, the rank, namely the number of linearly independent columns
or rows, is a useful parameter to characterize the amount of information stored in
the matrix. The rank of an n×m matrix specifies the number of vectors a ∈ Cn and
b ∈ Cm necessary to decompose it into a sum of terms a · bT. One application of
such decompositions is low-rank approximations of matrices. It turns out that the
truncation of the singular value decomposition (i.e. neglecting the smallest singular
values) gives the best fixed-rank approximation of the given matrix with respect to the
Frobenius norm (i.e. the entrywise 2-norm). This result is known as the Eckart-Young
theorem [17]. The field of matrix decompositions can be extended into two directions,
the study of matrix decompositions with additional constraints and the field of tensor
decompositions.

In recent years the study of decompositions with additional restrictions on the sum-
mands a, b have gained significant importance due to their extensive applicability
in the fields of information theory, algebraic geometry, and optimization, to name
a few [19]. In contrast to the natural rank-decomposition of matrices, much less is
known about decompositions with additional constraints. For example, it is not clear
for every notion of restricted decomposition whether a matrix can attain a particular
decomposition with a fixed rank [3]. Nonetheless, there are many results regarding
upper and lower bounds of ranks for particular classes of matrices with respect to
different notions of ranks [19,21,22]. This leads to the concepts of separations between
different ranks, namely one rank can be arbitrarily much larger than the other.

Another direction in generalizing the study of decompositions is the extension of
matrix spaces to tensor product spaces. Such spaces are of particular interest not
only in quantum many-body physics but also in electrical engineering, data analysis,
or concerning machine learning [8, 20]. Investigations of particular examples, for
instance, matrix product states in the context of 1-dimensional quantum many-body
systems have led to useful descriptions of those systems. Nonetheless, a general
theory of tensor decompositions presents a lot of challenges and limitations which
arise from the limitations of matrix decompositions with additional restrictions. These
have hindered progress to more sophisticated systems.

In this thesis, we introduce different known notions of matrix factorizations and
tensor decompositions and extend these notions to approximate decompositions. We
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will investigate connections between these notions and properties of their different
ranks. In particular, we will study the space of matrices

Md ⊗Md ⊗ · · · ⊗Md (1)

whereMd denotes the space of complex d× d matrices and the space of tensors

Cd ⊗Cd ⊗ · · · ⊗Cd. (2)

We will examine several decompositions by considering different arrangements of
summation indices and symmetries in the summation terms. These are motivated
by the fact that many applications, for example, tensor networks, show that a rea-
sonable arrangement implies a significant reduction of the rank and hence a much
more effective description. The symmetries of the described system also translate to
symmetries in the decompositions and further imply a reduction of the number of
free parameters.

Another concept, we want to embed in the different decompositions, is the notion of
positivity. In many areas of research, the objects which describe the system apply a
notion of positivity. In quantum physics, for example, states will be represented by
positive semidefinite (psd) matrices. We will investigate different local certificates
of the fact that the global element is positive in tensor product spaces. It can be
shown that effective decompositions of psd matrices in the space (1) suffer from the
fact that there exists no sign of this global positivity in the parts of the decompo-
sition. On the other hand, decompositions with a local certificate of positivity can
be arbitrarily much more costly than the former decompositions. This behavior is
called separation between ranks and has several implications. This discussion is not
exclusive to the space of positive semidefinite matrices. Different notions of ranks of
nonnegative tensors (i.e. elements in (2) where all entries are nonnegative) exhibit
similar properties.

In the last part of this thesis, the main research project, we introduce notions of approx-
imate decompositions of the tensor product spaces (1) and (2) and its corresponding
ranks. Using recent results about approximate versions of the Carathéodory theorem,
which gives upper bounds on the number of coefficients for convex combinations,
we will investigate its implications to approximate decompositions. In particular, we
will see that the separations between different notions of ranks, which appear in the
exact case, will disappear in the approximate case.

The disappearance of the separations has many applications in different fields. We
expect, for example, that this result opens the door for an approximate canonical
form of matrix product density operators. A further interesting question regards local
approximations. In this work, we only study approximate ranks with respect to the
Schatten p-norm and the `p-norm for p > 1, which approximate the global element.
Another perspective would be local approximations which only approximate the
local elements of the tensor product decomposition.
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Chapter 1

Tensor Networks and Matrix
Decompositions

In order to describe quantum systems, the postulates of quantum mechanics con-
stitute the basic mathematical framework. One feature of the axiomatization is
the description of interacting systems utilizing tensor products. In particular, the
Hilbert space of two interacting systemsH1,H2 is given by its tensor product space
H = H1 ⊗H2. This is the basic mathematical resource describing entanglement
between the interacting systems. Extending this simple structure to more than two
interacting systems illustrates one of the main challenges in the development of an ap-
plicable, manageable theory of many-body quantum systems: the size of the Hilbert
space increases exponentially in the number of interacting systems. In particular,
every state of an n-fold tensor product system, each of dimension d, can be described
by

|ψ〉 =
d

∑
i0,...,in−1=1

ci0,...,in−1 |i0, . . . , in−1〉 (1.1)

where ci0,...,in ∈ C are dn different complex parameters constrained by the normaliza-
tion condition

d

∑
i0,...,in=1

|ci0,...,in−1 |
2 = 1.

At first glance, it seems not entirely clear whether physically relevant quantum states
are spread over this vast Hilbert space and exploit the whole range of degrees of
freedom, or whether the situation is rather this one:

H

Physically relevant states

In quantum many-body physics, it is especially interesting to describe local Hamilto-
nians, namely, systems with restricted interaction length. The study of these systems
employing tensor network states, for example, matrix product states led to a tremen-
dous insight into this topic in the last 20 years. In particular, tensor network states
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turned out to be an adequate description of the tiny sub-manifold containing the
physical states of local Hamiltonians (as visualized in the above figure).

The notion of matrix product states (MPS), that is, descriptions of the form

|ψMPS〉 :=
d

∑
i0,...,in=1

tr
(

A[0]
i0
· A[1]

i1
· · · A[n−1]

in−1

)
|i0, . . . , in−1〉 (1.2)

where A[k]
ik

are r × r matrices turned out to be a practical framework to describe
1-dimensional noncritical systems (i.e. systems with an energy gap between ground
state and first excited states) with an exponential decay in correlation. This is due to
the fact that ground states of local gapped Hamiltonians obey an area law [23]. In
particular, the entanglement entropy between two connected regions scales with the
boundary of the regions which is a constant in the 1d case [18].

The central parameter in the MPS description, characterizing the efficiency, is the size
of the matrices

A[k]
ik
∈ Mr.

This parameter is usually called bond dimension of the system in physics literature [30].
It is shown that local critical and noncritical systems can be approximated by a
MPS with bond dimension r depending polynomially in the system size n and the
approximation error ε with respect to the 2-norm [33]. In particular, this implies an
exponential improvement of the description compared to the representation of the
form (1.1). Hence, tensor networks are state-of-the-art in many situations, efficiently
describing quantum many-body systems.

In recent years the idea of tensor network decompositions describing pure states
was adapted to tensor decompositions of mixed states [34] which are needed for
the description of open systems. The matrix product density operator form (short
MPDO) is also relevant for boundary theories in 2d systems [6]. One profound
difference between the description of pure states with vectors |ψ〉 and the description
of mixed states with density matrices ρ is the fact that a density matrix has to be
additionally positive semidefinite (psd). Embedding this behavior to tensor network
decompositions leads to several challenges in the field. For example, the MPDO
form does not have a local certificate of positivity; namely, one cannot tell from
the local matrices whether the global element is psd or not. This behavior implies
that the description in this form cannot be interpreted as a mixed state. Hence,
many numerical methods developed for pure states do not apply to the MPDO-
form. Another approach that contains a local certificate of positivity is the idea of
purification. It is a well-known fact that every mixed state attains a description as a
pure state in a larger Hilbert space. Nonetheless, we will see that this approach leads
to an arbitrarily more costly description of the system. We will study this behavior in
the following sections more thoroughly.

The principal methodology to show this behavior will be a correspondence between
diagonal psd matrices and entrywise nonnegative matrices. We will introduce and
study this correspondence in Section 2.4. Decompositions of nonnegative matrices
received a lot of attention in recent years and have, besides this correspondence
to decompositions of psd matrices, a considerable variety of applications in, for
example, algebraic geometry or information theory, to name a few. We will study the
applications to communication complexity more thoroughly in Section 3.
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The goal of this chapter is to introduce different known tensor network decomposi-
tions of psd matrices and matrix decompositions in their natural way and also in the
language of tensor decompositions, namely as a sum of elementary tensors with a
special arrangement of the summation indices and different local certificates of posi-
tivity. This will be a starting point for generalized notions of tensor decompositions
based on simplicial complexes in Chapter 2. In addition, we will study the different
notions of ranks and their applications.

1 Decompositions of positive semidefinite matrices

In the following we will extend the idea of the matrix product state decompositions,
as already mentioned in (1.2) to mixed states. In particular, we define different
notions of tensor network decompositions for density matrices and will relate them
to particular tensor decompositions. We will denote the space of all complex d× d
matrices byMd, the hermitian conjugate by † and the complex conjugate by ∗. Recall
that a matrix ρ ∈ Md is called a density matrix if it is hermitian, i.e. ρ† = ρ, positive
semidefinite (denoted by ρ ≥ 0), i.e. all eigenvalues are nonnegative, and tr(ρ) = 1,
i.e. all eigenvalues sum up to 1.

In Section 1.1, we will introduce the matrix product density operator form as an analog to
the matrix product state for density matrices. Further, we will show a relation of this
decomposition to a special type of tensor decompositions, which will be a starting
point for further investigations in this section and will also give rise to extensions
of tensor decompositions on simplicial complexes. This more sophisticated decom-
position framework will be studied in Chapter 2. In Section 1.2, we will introduce
the local purification form as a decomposition with a local certificate of positivity of the
global element. Section 1.3 examines the defined notions of decomposition defined
in Section 1.1 and Section 1.2 with an additional constraint in the symmetry of the
decompositions. We will investigate the translational invariant tensor decompositions,
which can also be seen as a starting point for the extensions to more sophisticated
symmetric decompositions in Chapter 2.

1.1 The matrix product density operator form

The matrix product density operator (MPDO) form, first introduced in [34], is a canonical
generalization of the matrix product state decomposition to density matrices. It is
defined by

ρ :=
d

∑
i0,...,in−1,j0,...,jn−1=1

tr
(

ρ
[0]
(i0,j0)

· ρ[1]
(i1,j1)

· · · ρ[n−1]
(in−1,jn−1)

)
|i0, . . . , in−1〉〈j0, . . . , jn−1| (1.3)

where ρ
[k]
(ik ,jk)

∈ Mr and k ∈ {0, . . . , n− 1}. The visualization of this decomposition
as a tensor network is shown in Figure 1.1.

Considering the visual tensor network representation, the drawn connections denoted
by the indices α0, . . . , αn−1 describe the contractions of the different matrices ρ

[k]
(ik ,jk)

.
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j0 j1 j2 jn−1

i0 i1 i2 in−1· · ·

· · ·

ρ =
α1

i0

j0

α2

i1

j1

i2

j2

in−1

jn−1

α0

ρ[0] ρ[1] ρ[2] ρ[n−1]

FIGURE 1.1: Tensor network representation of the matrix product density
operator form.

Hence, these indices range from 1 to r, which is the dimension of the matrices.
The contractions with respect to the indices α1, . . . , αn−1 correspond to the matrix
multiplications, the contraction with respect to index α0 corresponds to the trace. In
physics literature, r is usually called the bond dimension and is a parameter for the
efficiency of the description [30]. In the following definition, we will (re-)define this
decomposition in the language of tensor decompositions. Based on this decomposition,
we will now consider different notions of ranks corresponding to the bond dimension
following [14].

Definition 1.1 (MPDO-form). Let ρ ∈ Md ⊗ · · · ⊗Md
∼= Mdn . A matrix product

density operator form is given by

ρ =
r

∑
α0,...,αn−1=1

ρ
[0]
α0,α1 ⊗ ρ

[1]
α1,α2 ⊗ · · · ⊗ ρ

[n−1]
αn−1,α0 (1.4)

where ρ
[k]
α,β ∈ Md for all α, β ∈ {1, . . . , r} and k ∈ {0, . . . , n− 1}.

The minimal integer r attaining a decomposition of the form (1.4) is called operator Schmidt
rank of ρ, in short osr(ρ).

Note that every representation in (1.3) given by the family of matrices{
ρ
[k]
(ik ,jk)

∈ Mr : k ∈ {0, . . . , n− 1} and ik, jk ∈ {1, . . . , d}
}

corresponds to a representation in (1.4) given by{
ρ
[k]
αk ,αk+1 ∈ Md : k ∈ {0, . . . , n− 1} and αk, αk+1 ∈ {1, . . . , r}

}
using the relation (

ρ
[k]
αk ,αk+1

)
ik ,jk

=
(

ρ
[k]
(ik ,jk)

)
αk ,αk+1

(1.5)

for all k ∈ {0, . . . , n− 1}, αk, αk+1 ∈ {0, . . . , r} and ik, jk ∈ {0, . . . , d}.

Further note that the tensor network representation in Figure 1.1 also gives an inter-
pretation of the tensor decomposition. It describes the arrangement of the indices in
the decomposition (1.4). In particular, every local matrix in the elementary tensors
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shares a joint index with its neighbors. This arrangement will be generalized to more
sophisticated geometries in Chapter 2.

The matrix product density operator form can also be defined with open boundary
conditions. This decomposition differs from the MPDO form in the fact that the
connection denoted by index α0 disappears. In other words, there is no connection
between the first and the last local space.

Remark 1.2 (MPDO-form with open boundary conditions). Let
ρ ∈ Md ⊗ · · · ⊗Md

∼=Mdn . A MPDO form with open boundary conditions (obc) is a
decomposition

ρ :=
d

∑
i0,...,in−1,j0,...,jn−1=1

ρ
[0]
(i0,j0)

· ρ[1]
(i1,j1)

· · · ρ[n−1]
(in−1,jn−1)

|i0, . . . , in−1〉〈j0, . . . , jn−1|

where ρ
[0]
(i0,j0)

∈ C1×r, ρ
[n−1]
(in−1,jn−1)

∈ Cr×1 and ρ
[k]
(ik ,jk)

∈ Mr for 1 ≤ k ≤ n− 2. Using the
correspondence in (1.5), we also can write the MPDO in a tensor decomposition form.

ρ =
r

∑
α1,...,αn−1=1

ρ
[0]
α1 ⊗ ρ

[1]
α1,α2 ⊗ · · · ⊗ ρ

[n−2]
αn−2,αn−1 ⊗ ρ

[n−1]
αn−1

The above defined decomposition can again be described as a tensor network shown
in Figure 1.2. 4

Note that the MPDO-decomposition with open boundary conditions corresponds in
the bipartite case (i.e. only one tensor product) to the trivial tensor decomposition

ρ =
r

∑
α=1

ρ
[0]
α ⊗ ρ

[1]
α .

We will use this fact later when studying the correspondence between decompositions
of bipartite psd matrices and factorizations of nonnegative tensors in Section 2.4.

j0 j1 j2 jn−1

i0 i1 i2 in−1· · ·

· · ·

ρ =
α1

i0

j0

α2

i1

j1

i2

j2

in−1

jn−1

ρ[0] ρ[1] ρ[2] ρ[n−1]

FIGURE 1.2: Tensor network representation of the MPDO form with
open boundary conditions.

One major problem of the above-defined decompositions is the lack of a local cer-
tificate of positivity. In other words, for a given ρ ≥ 0 it is not possible to detect the
fact of global positivity in the local matrices ρα,α′ . For example, it was shown in [11]
that for an MPDO-decomposition of a psd matrix ρ it is in general undecidable to
determine whether an extended version of the same MPDO to an arbitrarily larger
tensor product spaces remains positive semidefinite. It follows that there exists no
algorithm which determines an answer to this particular question. This implies that
there cannot exist a computable certificate of positivity in general in the MPDO form.
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Nonetheless, in the special case of separable states, it is possible to construct an MPDO-
form with a local certificate of positivity. Recall that a state ρ ∈ Md ⊗ · · · ⊗Md is
called separable if and only if it can be written in the form

ρ =
r

∑
α=1

pα · ρ[0]α ⊗ ρ
[1]
α ⊗ · · · ⊗ ρ

[n−1]
α pα ≥ 0 and

r

∑
α=1

pα = 1

where ρ
[0]
α ⊗ ρ

[1]
α ⊗ · · · ⊗ ρ

[n−1]
α ≥ 0 are product states.

Definition 1.3 (Separable MPDO-decomposition). Let ρ ∈ Md ⊗ · · · ⊗Md be separa-
ble. A separable matrix product density operator decomposition is a decomposition of
the form (1.4) additionally fulfilling the condition

ρ
[i]
α,α′ ≥ 0 for all α, α′ ∈ {1, . . . , r} and i ∈ {0, . . . , n− 1}.

Note that every state is separable if and only if there exists a separable MPDO-
decomposition [14]. Hence, the fact that separable states are decomposable into
product states can be generalized to MPDO-forms.

In the end, we want to present a generalization of the matrix product density operator
form, the so-called matrix product operator form. This decomposition is valid for
arbitrary operators and will be especially necessary to define the local purification form,
which is a decomposition with a local certificate of positivity for all psd matrices.

Definition 1.4 (Matrix product operator (MPO) form). Consider an operator

σ ∈ Md0,d′0
⊗Md1,d′1

⊗ · · · ⊗Mdn−1,d′n−1

whereMdi ,d′i
denotes the space of all complex di× d′i matrices. The matrix product operator

form is a decomposition of the form

σ =
r

∑
α0,...,αn−1=1

σ
[0]
α0,α1 ⊗ σ

[1]
α1,α2 ⊗ · · · ⊗ σ

[n−1]
αn−1,α0 . (1.6)

where σ
[k]
αk ,αk+1 ∈ Mdk ,d′k

.

The minimum integer r attaining a matrix product operator decomposition of σ is again called
operator Schmidt rank of σ, denoted osr(σ).

Note that in the computational basis notation, similar to (1.3), the MPO form again
consists of a family of r× r matrices. The only difference is the fact that the indices ik
range in {1, . . . , dk} and the indices jk in {1, . . . , d′k}.

1.2 The local purification form

In the following section, we will introduce the local purification form, which is a decom-
position similar to the matrix product density operator form but with a local certificate
of positivity. The local purification form is strongly related to the purification of mixed
states.
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To begin, recall the fact that every mixed state can be interpreted as a reduced state
(by tracing out the ancillary degrees of freedom) of a pure state in a bigger Hilbert
space. This fact formulated in the following well-known theorem [29].

Theorem 1.5. Let ρ ∈ Md be a mixed state. Then there exists a purification of ρ, i.e. a
Hilbert spaceHE and a pure state |ψ〉 ∈ Cd ⊗HE such that

ρ = trHE |ψ〉〈ψ|

Moreover,HE can be chosen with dim(HE) = d.

Proof. Since ρ is positive semidefinite, diagonalization yields

ρ =
d

∑
i=1

λi|vi〉〈vi|

where λi ≥ 0 and {|vi〉}d
i=1 is an orthonormal basis. Define

|ψ〉 =
d

∑
i=1

√
λi|vi〉|vi〉 ∈ Cd ⊗HE

where HE = Cd. We obtain that ρ = trHE |ψ〉〈ψ| where trHE denotes the partial
trace over the space HE. Moreover, since trρ = 1, we have ∑d

i=1 λi = 1 and hence
〈ψ|ψ〉 = 1.

Note that for an isometry V : HE → HE′ (i.e. V†V = id) and a purification |ψ〉 of ρ,
the state

(idCd ⊗V)|ψ〉 ∈ Cd ⊗HE′

is again a purification of ρ. Moreover, all purifications of ρ are related by an isometry
of the above type [29]. Instead of defining purifications as a pure state together with
a partial trace for the reconstruction of ρ, we can equivalently write a purification as
an operator.

Remark 1.6 (Purification as operator). Since we can write every purification of the
mixed state ρ ∈ Md as

|ψ〉 =
d

∑
i=1

m

∑
j=1

ψi,j|i〉
∣∣vj
〉
∈ Cd ⊗HE

where {
∣∣vj
〉
}m

j=1 is an orthonormal basis ofHE, we can define the operator

σ =
d

∑
i=1

m

∑
j=1

ψi,j
∣∣vj
〉
〈i| ∈ Mm,d.

The reduction to ρ (i.e. the partial trace overHE applied to |ψ〉) is given in this case by

σ†σ = ∑
i,j,i′,j′

ψ∗i′,j′ψi,j
∣∣i′〉〈vj′

∣∣vj
〉
〈i| = trHE |ψ〉〈ψ| = ρ.

4
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This remark implies that the existence of a purification for psd matrices relates to
the fact that a matrix ρ is psd if and only if ρ = σ†σ for some matrix σ ∈ Mm,d.
Moreover, the non-uniqueness of purifications relates to the fact that for a given
isometry V on an m-dimensional space we have (Vσ)†Vσ = σ†V†Vσ = σ†σ. The
constructed purification |ψ0〉 in the proof of Theorem 1.5 can be associated with the
unique positive semidefinite square root of ρ

σ0 =
d

∑
i=1

√
λi|vi〉〈vi|

where |vi〉 is the ith eigenstate of ρ with corresponding eigenvalue λi ≥ 0.

For the rest of this thesis, we will always see a purification as an operator, that is, in
the language of Remark 1.6.

In the following, we will define an analog to the MPDO form, the local purification
form. We will see that this decomposition has, in contrast to the MPDO form, a local
certificate of positivity for all positive semidefinite matrices.

Definition 1.7 (Local purification form). Let ρ ∈ Md ⊗ · · · ⊗Md
∼= Mdn . A local

purification form of ρ is given by a purification

σ ∈ Md0,d ⊗ · · · ⊗Mdn−1,d

in the matrix product operator form (1.6). The corresponding tensor network decomposition
is depicted in Figure 1.3.

The minimum integer r among all purifications and MPO decompositions is called purification-
rank. In other words,

puri-rank(ρ) = min{osr(σ) : ρ = σ†σ}.

Remark 1.8. By construction, every purification σ can be written as

σ = Vσ0

with an isometry V : HE → HE′ where HE :=
(
Cd)⊗n and the purification σ0 is the

positive square root of ρ given by

σ0 =
m

∑
j=0

√
λj
∣∣vj
〉〈

vj
∣∣ ∈ Mdn

where
∣∣vj
〉

is the jth eigenstate of ρ with eigenvalue λj ≥ 0. Hence, the purification
rank can be equivalently written as

puri-rank(ρ) = min{osr(Vσ0) : V isometry}.

4

The advantage of the local purification form is the existence of a local certificate of
positivity. In the following, we want to study this behavior more thoroughly.



1. Decompositions of positive semidefinite matrices 11

j0 j1 j2 jn−1

i0 i1 i2 in−1

ρ

· · ·

· · ·

=

σ[0]
α1

m0

i0

σ[1]
α2

m1

i1

σ[2]

m2

i2

σ[n−1]

mn−1

in−1

α0

σ[0]
β1

j0

σ[1]
β2

j1

σ[2]

j2

σ[n−1]

jn−1

β0

FIGURE 1.3: Tensor network of a purification ρ = σ†σ where σ attains
a matrix product operator form. The contractions with index mk show
the matrix multiplication of σ†σ. The order-4 tensors in the upper row

are given by
(

σ[k]
)

α,β,i,j
:= σ

[k]
α,β,j,i.

Let ρ ∈ Md ⊗ · · · ⊗Md
∼=Mdn be a positive semidefinite matrix and

σ =
r

∑
α0,...,αn−1=1

σ
[0]
α0,α1 ⊗ σ

[1]
α1,α2 ⊗ · · · ⊗ σ

[n−1]
αn−1,α0

a purification of ρ. Performing the matrix multiplication ρ = σ†σ leads to a decompo-
sition

ρ =
r

∑
α0,...αn−1,β0,...,βn−1=1

ρ
[0]
α0,α1,β0,β1

⊗ ρ
[1]
α1,α2,β1,β2

⊗ · · · ⊗ ρ
[n−1]
αn−1,α0,βn−1,β0

where we define

ρ
[i]
α,α′,β,β′ :=

(
σ
[i]
α,α′

)†
·
(

σ
[i]
β,β′

)
(1.7)

Rearranging the indices of the tensor ρ
[i]
α,α′,β,β′,k,l to a square matrix as

ρ[i] = ∑
k,l,α,α′,β,β′

(
ρ[i]
)k,l

α,α′,β,β′

∣∣k, α, α′
〉〈

l, β, β′
∣∣ ∈ Md·r2

and rearranging the indices of the local tensors σ
[i]
β,β′,m,l to a matrix

σ[i] = ∑
m,l,β,β′

(
σ[i]
)m,l

β,β′
|m〉
〈
l, β, β′

∣∣ ∈ MM,d·r2

where M is the dimension of the local ancillary space indexed by m, makes clear
the local certificate of positivity. This finally leads to the necessary and sufficient
condition for positive semidefiniteness

ρ[i] =
(

σ[i]
)†
·
(

σ[i]
)
≥ 0 for all i ∈ {0, . . . , n− 1}
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αk σ[k] αk+1

mk

ik

βk σ[k] βk+1

jk

=

σ[k]†

σ[k]

mk

(ik, αk, αk+1)

(jk, βk, βk+1)

FIGURE 1.4: Visualization of the local certificate of positivity for a
purification. This figure shows one local part in the purification of

Figure 1.3.

where we have used Relation (1.7). Figure 1.4 shows this fact in the language of
tensor networks.

Although the local purification form has a local certificate of positivity, its rank is
in general larger than the operator Schmidt rank. More precisely, some examples
have a constant operator Schmidt rank and a purification rank increasing in the
dimension of the system. This behavior appears even in the simplest nontrivial case,
namely bipartite matrices diagonal in the computational basis [12, 14, 15]. We will
study this behavior in the more general setting of tensor decompositions on simplicial
complexes in Chapter 2.

1.3 Translationally invariant decompositions

Symmetries play a central role in theoretical physics. In particular, imposing symme-
tries often leads to a massive reduction of free parameters and hence a much more
apt description of the physical system. In the following section, we want to introduce
translational invariance, a canonical symmetry in the study of 1d systems, which can
be described by matrix product states and matrix product density operators respec-
tively for particular cases. In Chapter 2 we will extend the notion of translational
invariance to arbitrary symmetries on simplicial complexes.

At the start, we introduce the notion of a translational invariant for an element in a
tensor product space.

Definition 1.9. Let ρ ∈ Md ⊗ · · · ⊗Md
∼=Mdn . We call ρ translational invariant (t.i.),

if TρT† = ρ, where T denotes the unitary translation operator of the physical indices

T =
d

∑
i0,...,in−1=1

|i1, i2, . . . , in−1, i0〉〈i0, i1, . . . , in−2, in−1|.

In other words, ρ is translational invariant if it commutes with the translation operator
T. This implies that ρ and T are simultaneously diagonalizable [25]. The above-
defined invariance can be equivalently defined by introducing the permutation

g : {0, . . . , n− 1} → {0, . . . , n− 1} : i 7→ i + 1
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as a group action where addition is meant to be modulo n. In particular, we can
define the linear mapping T(·)T† by its action on the generating set ofMd⊗ · · ·⊗Md,
namely all elementary tensors as

T
(

ρ[0] ⊗ · · · ⊗ ρ[n−1]
)

T† = ρ[g0] ⊗ · · · ⊗ ρ[g(n−1)] (1.8)

= ρ[1] ⊗ ρ[2] ⊗ · · · ⊗ ρ[n−1] ⊗ ρ[0].

In addition, translational invariance of ρ implies invariance for all permutations in
the group generated by g,

G := {gn : n ∈N} ⊆ Sn :=
{

π : {0, . . . , n− 1} → {0, . . . , n− 1} permutation
}

where gn is the n-fold composition of the translation g.

Let us now define the notion of translational invariant decompositions. A transla-
tional invariant decomposition is given by the same notions of decomposition defined
in Section 1.1 and Section 1.2 with the additional constraint that every elementary
tensor in the decomposition is translationally invariant. This implies that the de-
pendence of the tensor product site index in every matrix in the elementary tensor
disappears.

Definition 1.10 (Translational invariant decompositions). Let ρ be a matrix in the space
Md ⊗ · · · ⊗Md

∼=Mdn .

(i) A translational-invariant matrix product density operator (t.i.-MPDO) decompo-
sition is given by

ρ =
r

∑
α0,...,αn−1=1

ρα0,α1 ⊗ ρα1,α2 ⊗ · · · ⊗ ραn−1,α0 (1.9)

The minimal integer r among all t.i.-MPDO forms is called translational invariant
operator Schmidt rank, denoted

ti-osr(ρ).

(ii) The separable t.i.-MPDO form of ρ is given by a decomposition of the form (1.9) with
the additional property

ρα,α′ ≥ 0 for all α, α′ ∈ {1, . . . r}

The minimal integer r among all t.i. separable decompositions is called t.i. separable
rank, denoted

ti-sep-rank(ρ).

(iii) A translational invariant local purification of ρ is given by a purification ρ = σ†σ
where

σ ∈ Md0,d ⊗ · · · ⊗Mdn−1,d

is given in the translational invariant MPO-form

σ =
r

∑
α0,...,αn−1=1

σα0,α1 ⊗ σα1,α2 ⊗ · · · ⊗ σαn−1,α0 . (1.10)
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The minimal r among all purifications and t.i. MPO forms is called t.i. purification
rank, denoted

ti-puri-rank(ρ).

Note that the difference between non-t.i.- and t.i.-decompositions is the fact that the
local tensors of the latter do not depend on the tensor product index. Further note that
ρ is translational invariant if and only if there exists a t.i.-MPDO form. In particular,
a t.i.-MPDO form can be constructed from a general MPDO form. Similar results
hold for psd t.i. ρ and t.i. local purifications and separable t.i. ρ and t.i. separable
decompositions (see [14] for details).

Although every translational invariant state attains a translational invariant decom-
position, the corresponding t.i.-rank can be much larger than the non-t.i. rank.

Example 1.11 (The GHZ- and the W-state). In the following example we want to
study the different notions of decompositions on the GHZ- and W-state which are
both translational invariant.

(i) Consider the GHZ-state given by

|GHZ〉 :=

(
|0〉⊗n + |1〉⊗n

√
2

)

where |0〉⊗n and |1〉⊗n denote the n-fold tensor product state of |0〉 and |1〉 respec-
tively. We consider the corresponding density matrix

ρGHZ := |GHZ〉〈GHZ|

Since ρGHZ is a pure state (i.e. as a product of a column and a row vector a rank-1
matrix), a MPS decomposition of |GHZ〉 is already a valid purification. Further it
is easy to verify that ρGHZ is translational invariant. A t.i.-MPS decomposition of
|GHZ〉, i.e. a decomposition of the form

|ψt.i.-MPS〉 :=
d

∑
i0,...,in=1

tr
(

Ai0 · Ai1 · · · Ain−1

)
|i0, . . . , in−1〉 (1.11)

is given by

A0 := 2−
1

2n ·
(

1 0
0 0

)
A1 := 2−

1
2n ·
(

0 0
0 1

)
.

Hence,
puri-rank(ρGHZ) = ti-puri-rank(ρGHZ) = 2.

Since for pure states we have ti-puri-rank(ρ)2 = ti-osr(ρ) (similar to the non-t.i. case,
see [14, Prop. 47] for details) we have

osr(ρGHZ) = ti-osr(ρGHZ) = 4.

A realization of an MPDO (in the form of (1.3)) with rank 4 is given by the 4× 4
matrices

ρ(0,0) := 2−
1
n · E11, ρ(0,1) := 2−

1
n · E22, ρ(1,0) := 2−

1
n · E33, ρ(1,1) := 2−

1
n · E44

where Eij is the matrix which is 1 in the (i, j)-entry and zero elsewhere.
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(ii) Consider the W-state given by

|W〉 :=
1√
n

n−1

∑
j=0

σ
(j)
x |0〉⊗n

where σ
(j)
x acts as σx := |0〉〈1| + |1〉〈0| on the jth local space and as an identity

elsewhere. For example in the case of n = 4 we have

|W〉 = 1
2

(
|0, 0, 0, 1〉+ |0, 0, 1, 0〉+ |0, 1, 0, 0〉+ |1, 0, 0, 0〉

)
.

We consider again the corresponding density matrix ρW := |W〉〈W|. Similar to (i),
|W〉 is a purification which can be decomposed by a (non t.i.) MPS decomposition
(i.e. of the form (1.2)) by

A[0]
0 :=

1√
n
·
(

0 0
1 0

)
, A[0]

1 =
1√
n
·
(

0 0
0 1

)
and for i ∈ {1, . . . , n− 1}

A[i]
0 :=

(
1 0
0 1

)
, A[i]

1 =

(
0 1
0 0

)
.

Hence puri-rank(ρW) = 2 and since ρW is a pure state, osr(ρW) = 4 by [14, Prop. 47].
On the other hand, it is shown in Ref. [14] that

ti-puri-rank(ρW) ≥
√

n.

(iii) Consider a mixed state version of the W-state, i.e.

ρ :=
1
n

n−1

∑
j=0

σ
(j)
x (|0〉〈0|)⊗nσ

(j)
x .

For example in the case of n = 3 the density matrix has the form

ρ =
1
3

(
|0, 0, 1〉〈0, 0, 1|+ |0, 1, 0〉〈0, 1, 0|+ |1, 0, 0〉〈1, 0, 0|

)
.

By definition, ρ is separable and translational invariant but the upper decomposition
is not explicitly translational invariant. Similar to (ii) it is shown in Ref. [14] that

sep-rank(ρ) = 2 and ti-sep-rank(ρ) ≥
√

n

4

2 Factorizations of nonnegative matrices

We have seen in Section 1 different notions of decompositions on the tensor prod-
uct spaceMd ⊗ · · · ⊗Md with the canonical notion of positivity given by positive
semidefinite matrices. In the following section, we introduce a different approach to
decompositions on the space of nonnegative matrices, namely matrices with nonneg-
ative entries. In the language of matrix analysis, the rank of a matrix is the number of



16 Chapter 1. Tensor Networks and Matrix Decompositions

linearly independent columns or rows, respectively, of the given matrix. We will see
that this parameter also corresponds to the number of rank-1 matrices (i.e. matrices,
which can be written as v · wt for two vectors v, w) necessary for a valid decomposi-
tion. Based on this decomposition, further factorizations with additional constraints
on the elementary elements of the decomposition can be defined.

This section is organized as follows: In Section 2.1 and Section 2.2, we introduce dif-
ferent notions of factorizations, which in general only exist for nonnegative matrices.
We also extend these notions to symmetric decompositions (Section 2.3). Finally, we
will relate these factorizations with decompositions of psd matrices on the bipartite
tensor product spaceMd ⊗Md (Section 2.4).

2.1 Minimal and nonnegative factorization

In the following, we introduce the notions of minimal and nonnegative factorizations,
i.e. writing a given matrix as a matrix product of two other matrices whose size
correspond to the rank of the given matrix. Recall that for a given p × q matrix
M ∈ Mp,q the rank of the matrix M, denoted rank(M), is the number of linearly
independent rows or columns, respectively. An equivalent characterization is the
dimension of the range of linear map induced by the matrix M,

Im(M) := {Ax : x ∈ Cq}

In other words,
dim(Im(M)) = rank(M).

Further recall that every matrix M admits a singular value decomposition. In par-
ticular, there exist isometries U ∈ Mp,r, V ∈ Mq,r (i.e. U†U = id, V†V = id) with
r = rank(M) ≤ min{p, q} and Σ ∈ Mr a diagonal matrix with positive entries such
that

M = U · Σ ·V†.

Proposition and Definition 1.12 (Minimal factorization [7]). Let M ∈ Mp,q. There
exists A ∈ Mp,r and B ∈ Mq,r where r = rank(M) such that

M = A · BT.

The above factorization is called minimal factorization of M.

Proof. Let M = U · Σ ·V† a singular value decomposition of M. Setting

A = U ∈ Mp,r and B =
(

Σ ·V†
)T
∈ Mq,r

shows the statement.

The definition of the minimal factorization as a product of two rectangular matrices
can be used as a starting point to study factorizations with additional constraints.
For example, in the following, we define the notions of nonnegative factorizations.
In Section 2.3, we will study similar factorizations with additional constraints in
symmetry.
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Definition 1.13 (Nonnegative factorization). Let M ∈ Mp,q. A nonnegative factoriza-
tion of M is a minimal factorization

M = A · BT

where A ∈ Mp,r and B ∈ Mq,r are nonnegative matrices, i.e. all entries are nonnegative.
The minimal r attaining a nonnegative factorization is called nonnegative rank, denoted

nn-rank(M).

Note that the above notions, minimal and nonnegative factorization, can be equiva-
lently written as a decomposition in the form

M =
r

∑
l=1

al · bT
l =

r

∑
l=1

al ⊗ bl

where al and bl are the lth column of A and B respectively and al ⊗ bl := al · bT
l is a

realization of the tensor product space Cp ⊗Cq ∼=Mp,q. This expression shows that
the rank of a tensor product decomposition coincides in this particular case with the
rank of a matrix. Furthermore, the upper decomposition is nonnegative if and only if
all vectors al , bl have nonnegative entries.

The minimal and nonnegative factorization can also be equivalently written as

Mij = ãT
i · b̃j = 〈ãi, b̃j〉 (1.12)

where both ãi and b̃j ∈ Cr are the ith and jth row of A and B respectively.

Note that a nonnegative decomposition exists if and only if M is nonnegative. In
particular, for a nonnegative matrix M it holds that

rank(M) ≤ nn-rank(M) ≤ min{p, q},

where the former inequality is trivial and the latter inequality holds due to the fact
that M = Ip ·M and M = M · Iq are valid nonnegative decompositions where Ip and
Iq are the identity matrices of size p and q respectively. The first inequality can also
be strict for nonnegative matrices. For example, the matrix

M =


1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1


has rank(M) = 3 and nn-rank(M) = 4 [7]. We will discuss a further example in the
context of separations in Theorem 2.16.

Note that the relation between minimal and nonnegative factorizations, and tensor
decompositions on Cp ⊗ Cq as described in (i) also gives rise to an extension of
decompositions to nonnegative tensors on the space Cd ⊗ · · · ⊗Cd. This extension will
be studied in the context of decompositions on simplicial complexes in Chapter 2
more thoroughly.
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2.2 Positive semidefinite factorization

In the following we want define a non-commutative extension of the notion of non-
negative decompositions, namely the positive semidefinite decomposition. Note that
for a nonnegative factorization, Relation (1.12) shows a representation of this decom-
position as a scalar product on the cone Rd

+. The positive semidefinite factorization is
a generalization to the cone of real psd matrices together with the scalar product

〈A, B〉 := tr
(

A · BT
)

.

Nevertheless, we also allow in the following definition complex psd matrices.

Definition 1.14 (Positive semidefinite decomposition [21]). Let M ∈ Mp,q be nonnega-
tive. A positive semidefinte definite (psd) factorization of M is given by

Mij = tr
(

Ei · FT
j

)
where Ei, Fj ∈ Mr are psd matrices for i ∈ {1, . . . , p} and j ∈ {1, . . . , q}. The minimal r
which attains a psd factorization is called positive semidefinite rank of M, denoted

psd-rank(M).

Note that for a nonnegative matrix M ∈ Mp,q the following relation holds [19]

1
2

√
1 + 8rank(M)− 1

2
≤ psd-rank(M) ≤ nn-rank(M) (1.13)

where the second inequality is trivial because every nonnegative decomposition
can be realized as a positive semidefinite decomposition. This is because the scalar
product used for nonnegative vectors is equal to the scalar product of psd matrices
restricted to diagonal matrices. Further note that in this definition the transpose
makes no difference since positive semidefiniteness persists under transposition. We
leave in a transpose for later convenience.

We end this section with a simple example from [19] which shows the relations
between the different ranks.

Example 1.15. Consider the nonnegative matrix

M =

 0 1 1
1 0 1
1 1 0


It is clear that rank(M) = nn-rank(M) = 3. This implies by Relation (1.13) that

2 ≤ psd-rank(M) ≤ 3.

A psd-factorization is given by

E1 = F2 =

(
1 0
0 0

)
, E2 = F1 =

(
0 0
0 1

)
, E3 =

(
1 −1
−1 1

)
and F3 =

(
1 1
1 1

)
.

Hence, psd-rank(M) = 2. 4
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2.3 Symmetric factorizations

In the following, we introduce notions similar to the minimal, nonnegative, and
positive semidefinite factorization with an additional constraint in symmetry. These
factorizations are defined only for square matrices due to obvious reasons in the
definition.

Definition 1.16 (Symmetric factorizations). Let M ∈ Md be a square matrix.

(i) A symmetric factorization of M is given by

M = A · AT

where A ∈ Md,r. The minimal integer r attaining such a decomposition is called
symmetric rank of A, denoted

symm-rank(M).

(ii) A completely positive (cp) factorization of M is given by a symmetric factorization

M = A · AT

where A ∈ Md,r is nonnegative. The minimal r attaining such a decomposition is
called completely positive rank, denoted

cp-rank(M).

(iii) A completely positive semidefinite transposed (cpsdt) factorization of M is a
factorization of the form

Mij = tr
(

Ei · ET
j

)
where Ei ∈ Mr is psd for all i ∈ {1, . . . , d}. The minimal r among all such decomposi-
tions is denoted

cpsdt-rank(M).

A symmetric factorization of M exists if and only if M is symmetric (i.e. MT = M).
It can be computed for example by Takagi’s factorization [25] which consists of a
unitary U ∈ Md (i.e. U†U = UU† = id) and a diagonal matrix Σ containing the
nonnegative square roots of M ·M† such that

M = U · Σ ·UT.

Obviously, A = U ·
√

Σ is a valid symmetric factorization. By the definition of Σ it
holds that

symm-rank(M) ≤ d.

Note that this decomposition is very similar to a decomposition of psd matrices. The
only difference is the third factor, which is here UT instead of U†.

A nonnegative matrix M admits a cpsdt factorization if and only if M is symmetric.
This fact can be shown using the later introduced relation (Theorem 1.18) between the
cpsdt factorization and the symmetric purification form (Definition 1.17). For details,
we refer to [14].
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Further note that in the case of cpsdt factorization, the transposition in the second
factor makes a difference. The factorization without transposition is called completely
positive semidefinite (cpsd) factorization. In contrast to all other defined factorizations,
very little is known about this factorization. For example, there does not even
exist an upper bound of the cpsd-rank dependent on the dimension of the studied
matrices [22].

Note that not every nonnegative square matrix M has a cp factorization. A necessary
condition for the existence of a cp factorization is that M is positive semidefinite. One
necessary and sufficient condition for M to have a cp factorization is the relation
between nonnegative matrices and symmetric separable decompositions (Definition
1.17) given in Theorem 1.18. In the topic of completely positive factorizations, there
are still many open questions concerning deciding membership or the geometry of
the cp-cone [3].

2.4 Correspondence between decompositions and factorizations

In the last two parts, Section 1 and Section 2, we have defined different notions of de-
compositions in two different spaces. The former notions, namely the decompositions
for psd matrices, are of interest in the study of quantum many-body systems and their
effective descriptions. The latter, namely the factorizations of nonnegative matrices,
are applied in the field of conic optimization and were studied a lot in recent years. In
this part, we will introduce the notion of symmetric, bipartite decompositions of psd
matrices, which are a symmetric analog to the MPDO with open boundary conditions
(Remark 1.2). We will show a correspondence between these decompositions and the
factorizations of nonnegative matrices. Theorem 1.18 will be extended to weighted
simplicial complexes and proved in this general setting in Chapter 2.

Recall that a matrix product density operator with open boundary conditions (Remark
1.2) in the bipartite case has the shape

ρ =
r

∑
α=1

ρ
[0]
α ⊗ ρ

[1]
α . (1.14)

In particular, since the bipartite MPDO with open boundary conditions has only one
index, it is equivalent to the trivial bipartite tensor decomposition. Moreover, similar
to the t.i.-MPDO case, we define a symmetric analog to the tensor decomposition. In
the language of (1.8) the symmetric tensor decomposition is an explicitly invariant de-
composition for the full permutation group Sn. This leads to the following definition
of the different notions of ranks as a symmetric tensor decomposition.

Definition 1.17 (Symmetric decomposition [8]). Let ρ ∈ Md ⊗ · · · ⊗Md
∼=Mdn .

(i) A symmetric decomposition is given by

ρ =
r

∑
α=1

ρα ⊗ ρα ⊗ · · · ⊗ ρα

(ii) A symmetric separable decomposition is given by a symmetric decomposition with
the additional property

ρα ≥ 0 for all α ∈ {1, . . . , r}.
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(iii) A symmetric local purification form is given by ρ = σ†σ, where

σ ∈ Md′,d ⊗ · · · ⊗Md′,d

admits a symmetric decomposition of the form

σ =
r

∑
α=1

σα ⊗ σα ⊗ · · · ⊗ σα

where σα ∈ Md′,d.

Note that a symmetric tensor decomposition exists if and only if ρ is invariant with
respect to arbitrary permutations of the tensor product spaces [8]. In other words, for
all permutations π : {0, . . . , n− 1} → {0, . . . , n− 1} we have

ρ(i0,...,in−1,j0,...,jn−1) = ρ(iπ(0),...,iπ(n−1),jπ(0),...,jπ(n−1))
.

Note that the symmetric bipartite decomposition

ρ =
r

∑
α=1

ρα ⊗ ρα

corresponds to a symmetric version of the bipartite MPDO-form with open boundary
conditions (1.14) but is different than the bipartite t.i.-MPDO-form (1.9)

ρ =
r

∑
α0,α1=1

ρα0,α1 ⊗ ρα1,α0 .

In the following, assume ρ describes a bipartite system diagonal in a local basis, for
example the computational basis, i.e.

ρ =
p

∑
i=1

q

∑
j=1

mij|i, j〉〈i, j| ∈ Mp ⊗Mq. (1.15)

In other words, ρ describes a classically correlated quantum system. We define the
corresponding p× q matrix by

M =
p

∑
i=1

q

∑
j=1

mij|i〉〈j| ∈ Mp,q.

Note that M is nonnegative (i.e. entrywise nonnegative) if and only if ρ is psd.

The following theorem relates the decompositions of diagonal bipartite psd matrices
ρ to the decompositions of the corresponding nonnegative matrices M. This implies
that the corresponding ranks of these decompositions are equal. We will prove this
correspondence in Chapter 2 in a more general setting (see Theorem 2.12 for details).
For a proof of this particular case, we refer to [14].

Theorem 1.18. Let ρ ∈ Mp ⊗Mq be a bipartite, diagonal matrix of the form (1.15) and
M ∈ Mp,q the corresponding nonnegative matrix. Then the following correspondences
between decompositions of psd matrices and factorizations of nonnegative matrices are true:
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Decomposition of ρ Factorization of M

(i) MPDO-form with obc minimal factorization
(ii) separable MPDO-form with obc nonnegative factorization

(iii) local purification form with obc psd factorization
(iv) symmetric decomposition symmetric factorization
(v) symmetric separable decomposition completely positive factorization

(vi) symmetric local purification form cpsdt factorization

Note that above theorem is a special case of Theorem 2.12 presented below, which
shows the correspondence between decompositions of psd matrices and nonnegative
tensors on arbitrary simplicial complexes Ω with valid group actions G. Using
Theorem 2.12, Theorem 1.18 is an immediate implication using the line of length 1,
namely Ω = Λ1, and the group actions G = {id} ⊆ S2 and G = S2.

3 Nonnegative factorizations and correlation complexities

The study of factorizations of nonnegative matrices has many applications in different
fields — for example, in semidefinite and linear programming or algebraic geometry
[19]. In this section, we want to study the relation of factorizations to correlation
complexities more thoroughly. Finally, we show the separation between the quantum
correlation complexity and the classical correlation complexity.

Assume Alice and Bob want to generate random variables X and Y respectively based
on a probability distribution P taking finitely many values. We denote the probability
of Alice generating X = i and Bob generating Y = j by P(X = i, Y = j). Hence the
distribution of the random variable X taking values in {1, . . . p} and Y taking values
in {1, . . . , q} can be represented by a normalized (i.e. all entries sum to 1), nonnegative
matrix M ∈ Mp,q setting

Mij := P(X = i, Y = j).

The condition
p

∑
i=1

q

∑
j=1

Mij = 1

corresponds to the normalization of the probability distribution.

Assume, Alice and Bob are spatially separated, i.e. they cannot communicate and also
cannot observe the generated random variable of the other party. This lack of com-
munication implies that the generated random variables X and Y are independent, in
other words

P(X = i, Y = j) = P(X = i) · P(Y = j).

In the language of nonnegative matrices, this is equivalent to M being a rank-1 matrix,

M = v · wT = v⊗ w

where v ∈ Cp with vi = P(X = i) and w ∈ Cq with wj = P(Y = j).
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Alice Bob

X Y

101101 101101

Eve

Z Z

(A) Realization of RCorr. Eve sends
the same classical bit-string to Alice
and Bob. X and Y are generated by
probability distributions conditioned

on the value of Z.

Alice Bob

X Y

|ψA〉 |ψB〉

Eve

(B) Realization of QCorr. Eve gener-
ates a quantum state and sends one
part to Alice and one part to Bob.
Generation of X and Y by a positive
operator valued measure (POVM).

FIGURE 1.5: Visualization of the quantum and classical correlation
complexities.

The natural question arising in this discussion is the following: Is there a measure
of correlation of P? We will see that the answer to this question is positive and is
connected to the nonnegative and positive semidefinite rank of the matrix M.

This section is organized as follows: In Section 3.1 we will show a relation between
the classical correlation complexity of P and the nonnegative rank of M. In Section
3.2 we will present a similar relation between the quantum correlation complexity of
P and the positive semidefinite rank of M. Finally, we will show in Section 3.3 the
appearance of a separation between these notions of correlation complexity, i.e. the
former can be arbitrarily larger than the latter.

3.1 Interpretation of the nonnegative rank

Let us now extend this discussion to the configuration shown in Figure 1.5. As-
sume there is a third party, Eve, which generates a random variable Z taking values
{1, . . . , r} and sends the value of Z as a (classical) bit-string to both Alice and Bob.
For a rigorous mathematical discussion, we need, therefore, the notion of conditional
probability. The conditional probability distribution of X under condition Z is defined
as

P(X = i|Z = l) :=
P(X = i, Z = l)

P(Z = l)
for i ∈ {1, . . . , p} and l ∈ {1, . . . r}.

It describes the probability distribution of X if the result of Z is determined for the
given probability distribution of the tuple (X, Z).

We are now able to classify all possible distribution functions P realized after fixing a
strategy and a fixed value r of outcomes for Z, which limits the shared information.

Theorem 1.19 (Characterization of the nonnegative rank [7]). Let X, Y be random vari-
ables taking values in {1, . . . p} and {1, . . . , q} respectively with joint probability distribution
P. Let M be the corresponding nonnegative matrix. The following statements are equivalent:
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(i) There exists a rank-r nonnegative factorization

M =
r

∑
l=1

vl · wT
l

with vl ∈ R
p
+ and wl ∈ R

q
+.

(ii) The probability distribution P can be generated by a random variable Z mapping to
{1, . . . , r} and X, Y independent random variables conditioned on Z, i.e.

P(X = i, Y = j) =
r

∑
l=1

P(X = i|Z = l) · P(Y = j|Z = l) · P(Z = l)

Proof. We will start with the easier direction.
(ii) =⇒ (i): We have to show that M attains a rank-r decomposition. Hence, define
(vl)i = P(X = i|Z = l) · P(Z = l) and (wl)j = P(Y = j|Z = l). By definition of the
conditional probability we get the desired result

Mij = P(X = i, Y = j) =
r

∑
l=1

(vl)i · (wl)j =
r

∑
l=1

vl · wT
l .

(i) =⇒ (ii): Let

M =
r

∑
l=1

vl · wT
l

be a nonnegative rank-r factorization. Define the probability distribution of the
random variable Z as

P(Z = l) := ‖vl‖`1 · ‖wl‖`1 ≥ 0

where l ∈ {1, . . . , r} and ‖ · ‖`1 is the sum of all entries. This is a valid probability
distribution since

r

∑
l=1

P(Z = l) =
r

∑
l=1
‖vl‖`1 · ‖wl‖`1 = ∑

i,j

r

∑
l=1

(vl)i · (wl)j

= ∑
i,j

r

∑
l=1

(
vl · wT

l

)
ij
= ∑

i,j
Mij = 1.

In the last step, we used the normalization of the probability matrix Mij. Further, we
define the normalized vectors

ṽl :=
vl

‖vl‖`1

and w̃l :=
wl

‖wl‖`1

and define the conditional probability distribution as

P(X = i|Z = l) := (ṽl)i and P(Y = j|Z = l) := (w̃l)j
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which are well defined by the normalization of the vectors ṽl and w̃l respectively.
Finally, we obtain

P(X = i, Y = j) =
r

∑
l=1

(vl)i · (wl)j

=
r

∑
l=1

P(X = i|Z = l) · P(Y = j|Z = l) · P(Z = l)

which shows the statement. In particular, this shows that X and Y are independent
when conditioned on Z.

In the configuration of Figure 1.5, the length of the bit-string, which contains the
realization of Z and is sent to Alice and Bob to generate a probability distribution P
is called random correlation complexity, denoted

RCorr(P).

Theorem 1.19 gives a direct characterization of the random correlation complexity
showed in the following corollary.

Corollary 1.20. Let X and Y be random variables with joint probability distribution P and
corresponding nonnegative matrix M. Then the following relation holds:

RCorr(P) =
⌈

log2 nn-rank(M)
⌉

.

3.2 Interpretation of the positive semidefinite rank

In the following, we introduce a quantum analog to the random correlation complex-
ity shown in Figure 1.5. We will first recall the notion of positive operator valued
measures (POVM), the mathematical framework describing the measurement of
quantum states. Recall that for a Hilbert space H, the set of all bounded linear op-
erators mappingH toH is denoted B(H). In the case of finite-dimensional Hilbert
spaces B(H) corresponds to the set of all linear operators onH.

Definition 1.21. A positive operator valued measure (POVM) on a Hilbert spaceH is a
family of positive semidefinite operators Ei ∈ B(H) where i ∈ {1, . . . , k} such that

k

∑
i=1

Ei = idH.

Note that a POVM {Ei}k
i=1 together with a state |ψ〉 ∈ H gives rise to a probability

distribution P, assigning every operator a different measurement result

P(X = i) := tr(Ei|ψ〉〈ψ|).

Further note that for given POVMs{
E[0]

i

}k

i=1
and

{
E[1]

i

}k

i=1
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onH1 andH2 respectively, the pairwise tensor product{
E[0]

i ⊗ E[1]
j

}k

i,j=1

again defines a valid POVM onH1 ⊗H2. We call this POVM a local POVM since all
measurements are done locally.

Assume that Eve can generate a quantum state in a Hilbert space HA ⊗HB where
dim(HA) = dim(HB) = r instead of a probability distribution of integer values
{1, . . . , r}. Assume also that the random variables X and Y generated by Alice
and Bob arise from local measurements of |ψ〉. Hence the probability distribution
corresponds to

P(X = i, Y = j) = tr
(
(Fi ⊗ Gj)|ψ〉〈ψ|

)
where {Fi}

p
i=1 is the POVM generating the random variable X taking values in

{1, . . . , p} and {Gj}
q
j=1 the POVM generating the random variable Y taking values in

{1, . . . , q}.

The following theorem characterizes the dimension r of the Hilbert spacesHA and
HB and the psd-rank of the nonnegative matrix induced by the joint probability
distribution.

Theorem 1.22. Let X and Y be random variables taking values in {1, . . . p} and {1, . . . , q},
respectively, with joint probability distribution P. Let M be the corresponding nonnegative
matrix. The following statements are equivalent:

(i) M admits a psd factorization of size r.

(ii) There exists a state |ψ〉 ∈ HA ⊗HB where dim(HA) = dim(HB) = r and two
POVMs {Fi}

p
i=1 and {Gj}

q
j=1 onHA andHB respectively such that

P(X = i, Y = j) = tr((Fi ⊗ Gj)|ψ〉〈ψ|)

Proof. We again start with the easier direction.

(ii) =⇒ (i): Let |ψ〉 ∈ HA ⊗ HB. Using the Schmidt-decomposition (see [29] for
details)

|ψ〉 =
r

∑
k=1

λk|uk〉 ⊗ |vk〉

where {|uk〉}r
k=1 and {|vk〉}r

k=1 are orthonormal bases ofHA andHB respectively and
λk ≥ 0, we define

U =
r

∑
k=1

√
λk|k〉〈uk| and V =

r

∑
k=1

√
λk|k〉〈vk|

where {|k〉}r
k=0 is an orthonormal basis of Cr. Using these matrices we obtain the

generating psd matrices of the psd factorization by setting

Ai = U · Fi ·U† ≥ 0 and Bj =
(

V · Gi ·V†
)T
≥ 0
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and obtain

tr
(

Ai · BT
j

)
= ∑

k,k′
λkλk′〈uk|Fi|uk′〉〈vk|Gj|vk′〉 = tr

(
(Fi ⊗ Gj)|ψ〉〈ψ|

)
(i) =⇒ (ii): Define

WA =
p

∑
i=1

Ai and WB =
q

∑
i=1

Bj

Obviously, WA and WB are as a sum of psd matrices psd and without loss of generality,
all eigenvalues of WA and WB are strictly positive. Else all Ai or all Bj would have a
joint eigenspace with eigenvalue 0, i.e. there exists a positive semidefinite factorization
with smaller a rank. We denote the square root of WA by

(WA)
1/2 =

r

∑
k=1

√
λ
(A)
k

∣∣∣ψ(A)
k

〉〈
ψ
(A)
k

∣∣∣
where λ

(A)
k > 0 are the eigenvalues and

∣∣∣ψ(A)
k

〉
the eigenstates of WA. Similarly we

denote the square root of WB by

(WB)
1/2 =

r

∑
k=1

√
λ
(B)
k

∣∣∣ψ(B)
k

〉〈
ψ
(B)
k

∣∣∣.
The definition

|ψ〉 = (W1/2
A ⊗W1/2

B )
r

∑
l=1
|l, l〉

yields a well defined state, since

〈ψ|ψ〉 =
r

∑
k,l=1
〈k, k|WA ⊗WB|l, l〉 =

r

∑
k,l=1
〈k|WA|l〉〈l|WT

B |k〉

= tr(WA ·WT
B ) =

p

∑
i=1

q

∑
j=1

tr(Ai · BT
j ) =

d

∑
i,j=1

Mij = 1

Further defining

Fi := (WA)
−1/2 · Ai · (WA)

−1/2 ≥ 0 and Gj := (WB)
−1/2 · Bj · (WB)

−1/2 ≥ 0

yield two valid POVMs {Fi}
p
i=1 and {Gj}

q
j=1 with the desired property

tr((Fi ⊗ Gj)|ψ〉〈ψ|) = 〈ψ|Fi ⊗ Gj|ψ〉 =
r

∑
k,l=1
〈k, k|Ai ⊗ Bj|l, l〉

= tr
(

Ai · BT
j

)
= Mij

Similar to the random correlation complexity RCorr(P) we also can define for this
configuration a measure of correlation. We define the quantum correlation complexity
QCorr(P) as the minimum number of qubits Eve has to send to each, Bob and Alice
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to generate the joint probability distribution P in the configuration of Figure 1.5 (B).
In other words, 2QCorr(P) indicates the dimension of the Hilbert spaces HA and HB.
Theorem 1.22 again immediately characterizes this complexity measure.

Corollary 1.23. Let X, Y a random variables with joint probability distribution P and
corresponding nonnegative matrix M. Then the following relation holds:

QCorr(P) =
⌈

log2 psd-rank(M)
⌉

.

3.3 Separation of correlation complexities

The characterizations of RCorr and QCorr in Corollary 1.20 and Corollary 1.23 have
several broad implications. Note that for all probability distributions P, Relation
(1.13) implies that

QCorr(P) ≤ RCorr(P),

hence the quantum method in this configuration is always more efficient. Besides,
for nn-rank and psd-rank there appears a separation, i.e. there exists no function
f : N→N such that

nn-rank(M) ≤ f (psd-rank(M)) for all d ∈N and M ∈ Md nonnegative.

In other words, the nonnegative rank cannot be upper bounded by the positive
semidefinite rank alone – there is also a dependence in the dimension of the matrix
M. This can be deduced with the following example, and further implies a separation
between QCorr(P) and RCorr(P).

Example 1.24 (Separation of QCorr and RCorr). Let Md ∈ Md be the Euclidean
distance matrix, that is, we define

(Md)ij = (i− j)2 for all i, j ∈ {1, . . . , d}.

It was shown in [19] that

psd-rank(Md) = 2 and nn-rank(Md) ≥ log2(d).

Define the joint probability distribution of X and Y corresponding to a normalized
version of Md as

P(X = i, Y = j) =
6 · (i− j)2

d2 · (d2 − 1)
for i, j ∈ {1, . . . , d}.

Using the characterizations of Corollary 1.20 and Corollary 1.23 immediately implies
for the joint probability distribution P

QCorr(P) = 1 and RCorr(P) ≥
⌈

log2 log2 d
⌉

4

The above example implies that for this class of probability distributions, the number
of classical bits which has to be sent to Alice and Bob respectively depends on the
dimension parameter d. In contrast, each probability distribution in this class can be
generated by only sending one qubit to each party.
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Chapter 2

Generalization of Decompositions
to Weighted Simplicial Complexes

In this chapter, we will present an extension of tensor decompositions based on
weighted simplicial complexes (wsc) introduced in [12]. This framework relates the
summation indices to facets of the wsc. Roughly speaking, a weighted simplicial
complex is a generalization of a graph which additionally allows:

(i) Multiple, identical connections;

(ii) Connections between more than two vertices (called facets); and

(iii) All connections have a weight

A graph only allowing extension (i) is called multigraph, and graphs allowing (i) and
(ii) are called multihypergraph [4]. In principle, the extension of tensor decompositions
can also be formulated for multihypergraphs, but the notion of wsc is easier to define
and work with.

We will also present the notions of symmetries in tensor decompositions with group
actions G on a wsc, which will be denoted Ω. These group actions give rise to a
generalization of translational invariant decompositions discussed in Section 1.3.

In this chapter, we will present a brief overview of the construction of the framework
of weighted simplicial complexes and group actions (Section 1), and then we will
introduce the notion of (Ω, G)-decompositions together with the notions of (Ω, G)-
ranks (Section 2). We will in particular discuss the application to psd matrices (Section
2.2) and nonnegative tensors (Section 2.3). Finally, we will study the relations of the
different ranks in Section 3.2.

1 Weighted simplicial complexes and group actions

The goal of this section is to present the notions of weighted simplicial complexes
(wsc) Ω and group actions G on Ω. In the beginning, we briefly introduce the notation
used in the following sections. Later, we will see some simple examples to motivate
the definition of wsc. For each index i ∈ [n] := {0, . . . , n}, we fix a C-vector space Vi
(called the local vector space). We denote the global vector space as the tensor product
space

V := V0 ⊗ · · · ⊗ Vn.
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By definition every v ∈ V can be expressed as a sum of elementary tensors

v[0] ⊗ · · · ⊗ v[n].

Similar to Chapter 1, we are interested in v as a tensor network, hence we define
decompositions with different arrangements of the summation indices. We will
provide some relevant and straightforward examples in Example 2.2.

Further, if v is invariant with respect to permutations of the indices [n] of the elemen-
tary tensors, we want to find explicitly invariant decompositions, that is, decomposi-
tions whose elementary tensors themselves are invariant under the permutation of
the indices [n]. This can be formalized by a group action.

Definition 2.1. Let G be a group and X be a finite set. A group action G on X is a mapping

G× X → X : (g, x) 7→ g · x

with the properties

(i) ∀x ∈ X : e · x = x (where e is the neutral element of G)
(ii) ∀x ∈ X, ∀g, h ∈ G : (gh) · x = g · (h · x)

We will write in the following gx instead of g · x for simplicity. Note that for a fixed
g ∈ G the mapping

X → X : x 7→ gx

is bijective. Hence, for X = [n] we can identify G as a subgroup of the symmetric
group

Sn := {π : [n]→ [n] : π bijective}

together with the concatenation as the multiplication.

In relation to symmetric tensor decompositions, we consider for a given group action
G on the set [n] the induced linear group action on V , i.e.

g : v[0] ⊗ · · · ⊗ v[n] 7→ v[g0] ⊗ · · · ⊗ v[gn]

for g ∈ G. An element v ∈ V is called G-invariant if it is invariant under the action
of G on V . The subspace of invariant elements is denoted Vinv. We are now able to
revisit some examples, already encountered in Chapter 1, with this notation.

Example 2.2. (i) Consider a decomposition of the form

v =
r

∑
α=1

v[0]α ⊗ · · · ⊗ v[n]α .

The minimal number r of elementary tensors is called the tensor rank of v. If we set
I = {1, . . . , r} and F = {{0, . . . , n}} we can equivalently write the decomposition as
a sum over all possible functions α : F → I , denoted α ∈ IF , in particular

v = ∑
α∈IF

v[0]α|0
⊗ · · · ⊗ v[n]α|n

(2.1)

where α|i denotes the restriction of α to the setFi = {F ∈ F : i ∈ F}. Intuitively, every
element F ∈ F corresponds to a summation index αi, and elements of F correspond
to the positions where αi appears.
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(ii) Let G be a transitive group action on [n], i.e. there is only one orbit, Gi = [n] for
all i ∈ [n]. For an element v which is invariant under the group action G we consider
the G-invariant decomposition

v =
r

∑
α=1

vα ⊗ · · · ⊗ vα

which is called symmetric tensor decomposition. The smallest number r among all
possible decompositions is called symmetric tensor rank.

(iii) Consider a decomposition of the form

v =
r

∑
α0,...,αn−1=1

v[0]α0 ⊗ v[1]α0,α1 ⊗ · · · ⊗ v[n−1]
αn−2,αn−1 ⊗ v[n]αn−1 .

Such a decomposition is called matrix product operator form and the minimal r among
all possible decompositions the operator Schmidt rank. By choosing

F =
{
{0, 1}, {1, 2}, . . . , {n− 1, n}

}
and I = {1, . . . , r} this corresponds to the decomposition of Equation (2.1).

(iv) Consider a decomposition of the form

v =
r

∑
α0,...,αn−1=1

v[0]α0,α1 ⊗ v[1]α1,α2 ⊗ · · · ⊗ v[n−2]
αn−2,αn−1 ⊗ v[n−1]

αn−1,α0 .

This is similar to the decomposition in (iii), but with periodic boundary conditions.
Hence, this decomposition corresponds to a choice of

F =
{
{i, i + 1} : i ∈ {0, . . . , n− 2}

}
∪
{
{n− 1, 0}

}
in the form of Equation (2.1). Additionally considering the symmetry operation given
by the cyclic group G = Cn (i.e. the group generated by a mapping i 7→ i + 1, where
addition is modulo n) we obtain the t.i. matrix product operator form [14]

v =
r

∑
α0,...,αn−1=1

vα0,α1 ⊗ vα1,α2 ⊗ · · · ⊗ vαn−2,αn−1 ⊗ vαn−1,α0 .

4

In the following, we will define the notion of weighted simplicial complexes (wsc) and
relate them to the sets F in Example 2.2. Relation (2.1), together with the definition
of wsc will be the critical parts of (Ω, G)-decompositions.

1.1 Weighted simplicial complexes

In this section, we give a rigorous definition of the notions of weighted simplicial
complexes (wsc) Ω based on [12]. This concept will formalize various arrangements
of indices in one consistent definition.
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Recall that we write Pn for the power set P([n]) (the set of all subsets of [n], which
has 2n+1 elements). For a more detailed discussion of the properties of wsc, we refer
to [10].

In the following, we denote the set of all natural numbers including 0 by N0.

Definition 2.3. (i) A weighted simplicial complex (wsc) on [n] is a function

Ω : Pn →N0

such that S1 ⊆ S2 ∈ Pn implies that Ω(S1) divides Ω(S2).

(ii) A set S ∈ Pn is called simplex of Ω if Ω(S) 6= 0. In the following, we will assume that
each singleton {i} ∈ Pn is a simplex, and call every element i ∈ [n] a vertex of the wsc. A
maximal simplex (with respect to inclusion) is called a facet of Ω. The set of all facets is
denoted

F := {F ∈ Pn : F facet of Ω}

and the set of all facets which contain the vertex i is denoted

Fi := {F ∈ F : i ∈ F}.

The restriction of Ω to F gives rise to a multiset, called F̃ , which contains F ∈ F precisely
Ω(F)-times. We define the multiset F̃i for i ∈ [n] analogously. There exists a canonical
collapse map

c : F̃ → F and c : F̃i → Fi

mapping all copies of a facet to the underlying facet.

(iii) Two vertices i, j are neighbors if

Fi ∩ Fj 6= {}.

Further, two vertices i, j ∈ [n] are connected if there exists a sequence of vertices i0, i1, . . . , ik
such that im and im+1 are neighbors for all m ∈ [k− 1] and i = i0 and j = ik.

Note that a wsc whose image is {0, 1} is called simplicial complex (sc). In contrast
to its weighted counterpart, an sc cannot contain multiple, identical facets. Hence, a
simplicial complex is a special case of a hypergraph containing single facets.

In the following, we give some straightforward examples of simplicial complexes
and relate their facets to the sets F constructed in Example 2.2.

Example 2.4. (i) The simplicial complex (sc) Σn that maps each subset of [n] to 1 is
called the n-simplex. For n = 2 this can be depicted as follows:

0 1

2

It only has one (multi-)facet, i.e. F = F̃ = {[n]} and hence gives rise to the tensor
decomposition of Example 2.2 (i) and (ii).
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(ii) For n ≥ 1, the line of length n (i.e. composed of n + 1 points) is the sc Λn
corresponding to the following graph:

· · ·
0 1 2 3 n

The set F = F̃ has n elements. In particular, it coincides with F in Example 2.2 (iii)
and hence generates a matrix product operator form. Intuitively, the sc shows the
connections between the local vector spaces through shared summation indices.

(iii) For n ≥ 3, the circle of length n is the sc Θn corresponding to the following
graph:

· · ·
0

1
2

3

4

n 9 2
n 9 1

It has n facets and generates the decomposition given in Example 2.2 (iv).

4

1.2 Group actions

The next step is the definition of group actions on weighted simplicial complexes.
Intuitively, these are group actions which respect the geometry of the wsc. First, we
will introduce the notions of G-linearity and G-invariance, which are necessary for
the classification of valid group actions on weighted simplicial complexes.

Definition 2.5. Let G be a group action on the sets X,Y. A function f : X → Y is called
G-linear if

f (gx) = g f (x)

for all x ∈ X and g ∈ G. If g acts trivially on Y, we call f G-invariant.

We say that the group action of G on X is free, if Stab(x) = {e} for all x ∈ X, where

Stab(x) := {g ∈ G : gx = x}.

To define a group action on Ω we first consider a group action of G on the set [n].
Every group action on [n] canonically induces a group action on Pn. Further, if Ω is
G-invariant, G also induces a group action on F , since for F ∈ F , g ∈ G and F ( S
holds Ω(gS) = Ω(S) = 0. These properties motivate the following definition.

Definition 2.6. A group action G on the wsc Ω consists of the following:

(i) An action G on [n] such that Ω is G-invariant with respect to the induced action on
Pn. This induces an action of G on F .
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(ii) An action of G on F̃ , such that the collapse map

c : F̃ → F

is G-linear (we also say the action of G on F̃ refines the action of G on F ).

Further, an action of G on the wsc Ω is called free if the action of G on F̃ is free.

Note that in order to obtain a group action on a wsc, one has to provide additional
information compared to a group action onF , namely, one must specify how elements
g ∈ G permute the different copies of facets in the multiset when passing from a facet
F to the facet gF. It is shown in [12, Prop. 7] that a group action on F can always be
refined to a free group action on F̃ .

In the following, we always associate a group action G as a group action on a wsc Ω,
that is, fulfilling Definition 2.6.

2 Invariant tensor decompositions and ranks

We are now ready to introduce the different types of (Ω, G)-decompositions and
their corresponding ranks. In Section 2.1, we will define the (Ω, G)-decomposition
without any additional restrictions to the elements in the local vector spaces. Later
on, we will use this notion in the space of matrices and the space of tensors. This will
be the basis for other decompositions in the cone of psd matrices (Section 2.2) and
nonnegative tensors (Section 2.3), where additional constraints characterize various
decompositions.

From now on, we fix a connected wsc Ω and a free group action G on Ω.

2.1 Decompositions in general vector spaces

We now present the notion of (Ω, G)-decomposition and its corresponding (Ω, G)-
rank. Recall that

V := V0 ⊗ · · · ⊗ Vn.

The local dimensions di := dim(Vi) can be chosen differently as long as there are no
further restrictions given by the group action of G on V ; that is, whenever i, j are in
the same orbit of the group action of G on [n], then di = dj. The construction in this
definition is based on the observations in Example 2.2.

Definition 2.7. For v ∈ V , an (Ω, G)-decomposition is given by a finite index set I and
families

V [i] :=
(

v[i]β

)
β∈I F̃i

,

where v[i]β ∈ Vi for i ∈ [n] such that:

(a) We have
v = ∑

α∈I F̃
v[0]α|0 ⊗ v[1]α|1 ⊗ · · · ⊗ v[n]α|n . (2.2)
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(b) For all i ∈ [n], g ∈ G and β ∈ I F̃i it holds

v[i]β = v[gi]
g β ,

where gβ ∈ I F̃gi and gβ(F) := β(g−1F) for F ∈ F̃gi.

The smallest cardinality of I among all possible (Ω, G)-decompositions of v is called the
(Ω, G)-rank of v, denoted

rank(Ω,G)(v).

If no (Ω, G)-decomposition of v exists, we set rank(Ω,G)(v) := ∞.

The mapping gβ is well defined due to the fact that G is a group action on Ω (in par-
ticular, it extends to F̃ and maps facets to facets). Note that if G is a free group action
on a connected wsc Ω, and v ∈ Vinv, there always exists an (Ω, G)-decomposition of
v [12, Thm. 13].

For simplicity, if G is the trivial group, we will call an (Ω, G)-decomposition just an
Ω-decomposition, and write rankΩ for the rank. The same simplification will also be
used for all ranks defined in the following two subsections.

2.2 Decompositions in the cone of psd matrices

Separability (or its negation, entanglement), and purifications are central notions in
quantum information theory. In the next two definitions, we will formulate these
notions in the framework of (Ω, G)-decompositions.

We will assume that the local vector space is given by

Vi :=Mdi

and hence
V :=Md0 ⊗ · · · ⊗Mdn

∼=Md0···dn ,

whose hermitian part is denoted by Herd0 ⊗ · · · ⊗Herdn
∼= Herd0···dn . The di can again

be chosen differently as long as there are no further restrictions given by the group
action of G. Further, we will define the cone of psd matrices asM+

d0···dn
. If ρ ∈ M+

d0···dn

fulfills tr(ρ) = 1, we call it a state.

Let us now define (Ω, G)-purifications and (Ω, G)-square root decompositions.

Definition 2.8. Let ρ ∈ M+
d0···dn

be a psd matrix.

(i) An (Ω, G)-purification is an element

σ ∈ Md′0,d0
⊗ · · · ⊗Md′n,dn

with

ρ = σ†σ and rank(Ω,G)(σ) < ∞,

whereMd′i ,di , denotes the space of all complex d′i × di matrices and † the hermitian conjugate.
The smallest (Ω, G)-rank among all (Ω, G)-purifications is called (Ω, G)-purification rank
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of ρ, denoted
puri-rank(Ω,G)(ρ).

(ii) σ ∈ Herd0 ⊗ · · · ⊗Herdn is called square root of ρ if σ2 = ρ. We call the smallest
(Ω, G)-rank among all square roots of ρ the (Ω, G)-quantum square root rank of ρ ,
denoted

q-sqrt-rank(Ω,G)(ρ).

Remark 2.9. (i) Note that not every matrix σ which fulfills σ2 = ρ is automati-
cally hermitian. Using the spectral decomposition of ρ setting ρ = UDU† with
D = diag(λ1, λ2, . . .), one can see that all its hermitian square roots are of the form [24]

σ = UD1/2U†, D1/2 = diag
(
±
√

λ1,±
√

λ2, . . .
)

.

(ii) If G is a free group action on a connected wsc Ω and ρ ∈ Vinv psd, there always
exists an (Ω, G)-purification of ρ and a square root with a finite (Ω, G)-rank (see
Theorem 27 in [12] for details). 4

The next step is the definition of the separable (Ω, G)-rank. We call the matrix
ρ ∈ M+

d0···dn
separable if it admits a decomposition

ρ = ∑
j

ρ
[0]
j ⊗ · · · ⊗ ρ

[n]
j

where ρ
[i]
j ∈ M

+
di

. Equivalently, the set of all separable matrices for fixed local
dimensions d0, . . . , dn is given by

M+
d0
⊗ · · · ⊗M+

dn
.

If additionally tr(ρ) = 1, we call ρ a separable state. From now on, we will denote the
set of separable states

SEPd0,d1,...,dn := {ρ ∈ M+
d0···dn

: ρ separable state}.

If a state ρ ∈ M+
d0···dn

is not contained in SEPd0,d1,...,dn , we call it entangled. Further, if
di = d for all i ∈ [n], we will write for simplicity SEPn,d := SEPd0,...,dn .

Definition 2.10. A separable (Ω, G)-decomposition of ρ ∈ Md0···dn is given by an
(Ω, G)-decomposition

ρ = ∑
α∈I F̃

ρ
[0]
α|0 ⊗ ρ

[1]
α|1 ⊗ · · · ⊗ ρ

[n]
α|n

in which ρ
[i]
β ∈ M

+
di

for all β ∈ I F̃i and i ∈ [n]. The smallest cardinality of an index set I
among all possible separable (Ω, G)-decompositions of ρ is called the separable (Ω, G)-rank
of ρ, denoted

sep-rank(Ω,G)(ρ).

If there exists no separable (Ω, G)-decomposition of v, we set sep-rank(Ω,G)(v) := ∞.

Note that if G is a free group action on a connected wsc Ω and ρ ∈ Vinv is separable,
there always exists a separable (Ω, G)-decomposition of ρ [12, Thm. 21].
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2.3 Decompositions in the cone of nonnegative tensors

In the following we will consider the set of nonnegative tensors and define different
notions of (Ω, G)-ranks based on [12, Sec. 5]. Before presenting the definitions of
different decompositions and ranks we will introduce the necessary notation.

For simplicity we consider the local space Vi = Cd and define the global space
V := Kn,d, where

Kn,d :=
n⊗

i=0

Cd.

If n and d are clear from the context, we write K instead of Kn,d. Any element M ∈ K
can be uniquely written as

M = ∑
i0,...,in

mi0,...,in ei0 ⊗ · · · ⊗ ein

where ej denotes the j-th standard basis vector in the corresponding vector space Cd.
M is said to be nonnegative if mi0,...,in ≥ 0 for all i0, . . . , in.

We now give a brief definition of notions of different (Ω, G)-decompositions and the
corresponding ranks. For a more detailed discussion we refer to [12].

Definition 2.11. Let M ∈ Kn,d be a tensor.

(i) A nonnegative (Ω, G)-decomposition of M is an (Ω, G)-decomposition (Equation
(2.2)) where all v[i]α|i ∈ Cd have nonnegative entries. The corresponding rank is called the
nonnegative (Ω, G)-rank of M, denoted

nn-rank(Ω,G)(M).

(ii) A positive semidefinite (Ω, G)-decomposition of M consists of psd matrices

E[i]
j ∈ M

+
ki

where ki =
∣∣∣I F̃i

∣∣∣ for i ∈ [n] and j ∈ {1, . . . , d}, such that(
E[i]

j

)
β,β′

=
(

E[gi]
j

)
gβ,gβ′

for all i, g, j, β, β′, where gβ(F) := β(g−1F) for F ∈ F̃gi, and

mi0,...,in = ∑
α,α′∈I F̃

(
E[0]

i0

)
α|0,α′|0

· · ·
(

E[n]
in

)
α|n,α′|n

for all i0, . . . , in. The smallest cardinality of an index set I among all possible positive
semidefinite (Ω, G)-decompositions is called the positive semidefinite (Ω, G)-rank of M,
denoted

psd-rank(Ω,G)(M).

(iii) N ∈ Kn,d with ni0,...,in ∈ R is called a square root of M, if M = N ◦ N, where
M = N ◦N denotes the Hadamard-product (i.e. entrywise multiplication, mi0,...,in

= n2
i0,...,in

).
The smallest (Ω, G)-rank among all square roots of M is called (Ω, G)-square root rank of
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M, denoted
sqrt-rank(Ω,G)(M).

Using the realization of the tensor product v⊗w := v ·wT where v ∈ Cd0 and w ∈ Cd1 ,
these notions of ranks are a natural extension of the ranks defined in Section 2 of
Chapter 1. For the nonnegative decomposition this is an obvious fact. For the positive
semidefinite decomposition we consider Ω = Λ1 (a line of length 1, equivalently Θ1

or Σ1, see Example 2.4 for details) and G the trivial group. Then F = F̃ = {{0, 1}}
and hence

mi0,i1 = ∑
α,α′∈IF

(
E[0]

i0

)
α|0 ,α′|0

·
(

E[1]
i1

)
α|1 ,α′|1

=
r

∑
α,α′=1

(
E[0]

i0

)
α,α′
·
(

E[1]
i1

)
α,α′

= tr
((

E[0]
i0

)
·
(

E[1]
i1

)T
)

which corresponds to the nonnegative rank defined in Section 2.2 of Chapter 1.

3 Relations between the different ranks

In this section we will prove relations between the different ranks. First, we will show
a correspondence between nonnegative tensors and diagonal psd matrices. Using this
correspondence we will relate the different notions of tensor ranks with the different
matrix ranks.

We will also study inequalities between different matrix ranks and similar relations
between tensor ranks (Section 3.2).

Then we will turn to the question of separations between different ranks, i.e. if some
ranks can be arbitrarily larger than others. This will be studied in Section 3.3. As
we will later see, one of the main results of Chapter 3 is the disappearance of these
separations in the approximate case.

3.1 Correspondence between nonnegative tensors and psd matrices

Here, we present the correspondence between nonnegative tensors and psd matrices
for arbitrary (Ω, G)-decompositions [12].

Recall that every tensor M ∈ Kn,d, written as

M = ∑
i0,...,in

mi0,...,in ei0 ⊗ · · · ⊗ ein

can be associated with a diagonal matrix σ ∈ Md ⊗ · · · ⊗Md
∼=Mdn+1 by setting

σ = ∑
i0...,in

mi0,...,in Ei0i0 ⊗ · · · ⊗ Einin , (2.3)

where Ejk is the d× d matrix which has value 1 on position (j, k) and 0 elsewhere.
Obviously σ is psd if and only if M is nonnegative.
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Using this correspondence, we can relate the notions of ranks for nonnegative tensors
with the ranks of psd matrices, as shown in the following Theorem based on [12].

Theorem 2.12. Let Ω be a connected wsc and G a group action on Ω. Further let M ∈ Kn,d
and σ ∈ Mdn+1 the corresponding diagonal matrix. Then the following holds:

(i) rank(Ω,G)(M) = rank(Ω,G)(σ)
(ii) nn-rank(Ω,G)(M) = sep-rank(Ω,G)(σ)

(iii) psd-rank(Ω,G)(M) = puri-rank(Ω,G)(σ)

(iv) sqrt-rank(Ω,G)(M) = q-sqrt-rank(Ω,G)(σ)

Proof. We show each point separately.

(i) We start with an (Ω, G)-decomposition

M = ∑
α∈I F̃

m[0]
α|0
⊗ · · · ⊗m[n]

α|n

where m[i]
β ∈ Cd for all β ∈ I F̃i where i ∈ {0, · · · , n}. Define the local diagonal matrix

σ
[i]
β := diag(m[i]

β ) ∈ Md. (2.4)

By the choice of the tensor product it is immediate that

σ = ∑
α∈I F̃

σ
[0]
α|0
⊗ · · · ⊗ σ

[n]
α|n
∈ Mdn+1

is diagonal and equal to the related matrix in Equation (2.3). Conversely for a given
diagonal matrix σ, the nonnegative tensor can be obtained again by Relation (2.4).

(ii) is similar to (i) using the fact that M is nonnegative if and only if σ is psd.
(iii) Let E[i]

j ∈ M
+
ki

be a psd matrix given from a psd (Ω, G)-decomposition of M

as defined in Definition 2.11 (ii). Then there exists a matrix A[i]
j ∈ Mki such that

E[i]
j =

(
A[i]

j

)†
·
(

A[i]
j

)
Such a matrix can be obtained for example by computing a hermitian square root√

E[i]
j . Denoting a[i]j,β ∈ CI

F̃i as the column β of A[i]
j , we can write for β, β′ ∈ I F̃i

(
E[i]

j

)
β,β′

=
(

a[i]j,β

)†
·
(

a[i]j,β′

)
.

Further, we obtain from the symmetry properties of E[i]
j that

a[gi]
j,g β = a[i]j,β

for all g ∈ G. Defining

ξ
[i]
β :=

d

∑
j=1

a[i]j,β ⊗ Ejj
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yields a valid (Ω, G)-purification since

σ = ξ†ξ = ∑
α,α′∈I F̃

(
(ξ

[0]
α|0
)† · (ξ [0]

α′|0
)⊗ · · · ⊗ (ξ

[n]
α|n
)† · (ξ [n]

α′|n
)

)

= ∑
α,α′∈I F̃

d

∑
j0,...,jn=1

(
E[0]

j0

)
α|0 α′|0

· · ·
(

E[n]
jn

)
α|n α′|n

Ej0 j0 ⊗ · · · ⊗ Ejn jn ,

where we have used that Ejj · Eii = δi,j · Ejj. Here, δi,j denotes the Kronecker delta (in
particular, δi,j = 1 if i = j and δi,j = 0 else). Conversely, let

ξ ∈ Md′0,d0
⊗ · · · ⊗Md′n,dn

be a (Ω, G)-purification of σ. We denote the local matrices of the (Ω, G)-decomposition
of ξ by ξ

[i]
β for β ∈ I F̃i and i ∈ {0, . . . , n} and define E[i]

j ∈ Mki by

(
E[i]

j

)
β,β′

:=
((

ξ
[i]
β

)†
·
(

ξ
[i]
β′

))
jj

A similar calculation as above shows that this definition provides a positive semidefi-
nite (Ω, G)-decomposition of M.

(iv) Let N ∈ Kn,d be a square-root of the tensor M, i.e.

M = N ◦ N

and n[i]
β ∈ Cd the local vectors realizing a (Ω, G)-decomposition of N. Hence, we can

write
M = ∑

α,γ∈I F̃

(
n[0]

α|0
· n[0]

γ|0

)
⊗ · · · ⊗

(
n[n]

α|n
· n[n]

γ|n

)
By defining

ξ
[i]
β :=

d

∑
j=1

(
n[i]

β

)
j
· Ejj

we obtain a valid (Ω, G)-quantum-square-root decomposition, since

ξ2 = ∑
α,γ∈I F̃

d

∑
j0,...,jn=1

(
n[0]

α|0

)
j0
·
(

n[0]
γ|0

)
j0
· · ·
(

n[n]
α|n

)
jn
·
(

n[n]
γ|n

)
jn

Ej0 j0 ⊗ · · · ⊗ Ejn jn

=
d

∑
j0,··· ,jn=1

mj0,··· ,jn Ej0 j0 ⊗ · · · ⊗ Ejn jn = σ.

The other direction can be showed by backwards calculation and the fact that the
local matrices ξ

[i]
β of the diagonal matrix ξ ∈ Md0···dn are again diagonal.
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3.2 Inequalities

In the following, we show several relations between the (Ω, G)-ranks of matrices. To
prove these inequalities, we construct for a given decomposition (specified through
the larger rank) another decomposition with the same rank. This immediately shows
that the latter decomposition has a smaller rank.

Theorem 2.13. For each ρ ∈ Md0 ⊗ · · · ⊗Mdn we have

(i) rank(Ω,G)(ρ) ≤ sep-rank(Ω,G)(ρ)

(ii) puri-rank(Ω,G)(ρ) ≤ sep-rank(Ω,G)(ρ)

(iii) rank(Ω,G)(ρ) ≤ puri-rank(Ω,G)(ρ)
2

(iv) puri-rank(Ω,G)(ρ) ≤ q-sqrt-rank(Ω,G)(ρ)

Proof. (i) Since every separable (Ω, G)-decomposition is a (Ω, G)-decomposition
this statement is obvious.

(ii) Let I be an index set which realizes a separable (Ω, G)-decomposition

ρ = ∑
α∈I F̃

ρ
[0]
α|0
⊗ · · · ⊗ ρ

[n]
α|n

Since ρ
[i]
β is psd there exists a hermitian square root

τ
[i]
β :=

√
ρ
[i]
β

for β ∈ I F̃i and i ∈ {0, . . . n}. Consider the matrix

ξ
[i]
β :=

(
τ
[i]
γ · δγ,β

)
β,d
∈ Mki ,d

where ki =
∣∣∣I F̃i

∣∣∣ and δγ,β is the Kronecker delta. By definition of τ
[i]
β we have

ξ
[gi]
gβ = ξ

[i]
β .

Hence these local matrices provide a valid (Ω, G)-decomposition of an element

ξ ∈ Mk0,d0 ⊗ · · · ⊗Mkn,dn .

with rank(Ω,G)(ξ) ≤ |I|. Since(
ξ
[i]
β

)†
·
(

ξ
[i]
γ

)
= δβ,γ · ρ[i]β

we obtain

ξ† · ξ = ∑
α,γ∈I F̃

(
ξ
[0]
α|0

)†
·
(

ξ
[0]
γ|0

)
⊗ · · · ⊗

(
ξ
[n]
α|n

)†
·
(

ξ
[n]
γ|n

)

= ∑
α∈I F̃

ρ
[0]
α|0
⊗ · · · ⊗ ρ

[n]
α|n

= ρ.
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(iii) First we will show that the (Ω, G)-rank of the product of two matrices is
smaller or equal than the product of the two individual (Ω, G)-ranks. Therefore,
let σ, τ ∈ Md0...dn . If σ attains a (Ω, G)-decomposition on an index set I and τ on
an index set J then σ · τ attains an (Ω, G)-decomposition on L := I × J . More
precisely, consider the two projections p1 : L → I and p2 : L → J and define

ζ
[i]
β := σ

[i]
p1◦β · τ

[i]
p2◦β

for β ∈ LF̃i and i ∈ {0, . . . , n}. These tensors provide a (Ω, G)-decomposition of σ · τ.
Hence

rank(Ω,G)(σ · τ) ≤ rank(Ω,G)(σ) · rank(Ω,G)(τ).

Now let ρ ∈ Md0...dn with (Ω, G)-purification ξ. Then we obtain

rank(Ω,G)(ρ) = rank(Ω,G)(ξ
† · ξ)

≤ rank(Ω,G)(ξ
†) · rank(Ω,G)(ξ) = puri-rank(Ω,G)(ρ)

2

(iv) Clear, since every (Ω, G)-square-root is an (Ω, G)-purification.

Using the correspondence given in Equation (2.3) and its implications in Theorem
2.12, we can easily prove a similar result to Theorem 2.13.

Corollary 2.14. Let M ∈ Kn,d. Then the following is true:

(i) rank(Ω,G)(M) ≤ nn-rank(Ω,G)(M)
(ii) psd-rank(Ω,G)(M) ≤ nn-rank(Ω,G)(M)

(iii) rank(Ω,G)(M) ≤ psd-rank(Ω,G)(M)2

(iv) psd-rank(Ω,G)(M) ≤ sqrt-rank(Ω,G)(M)

Proof. We only prove the first point, the other statements (ii)-(iv) are similar.

(i) Let σ be the diagonal matrix corresponding to M given in Equation (2.3). Then we
obtain using Theorem 2.12 and Theorem 2.13

rank(Ω,G)(M) = rank(Ω,G)(σ) ≤ sep-rank(Ω,G)(σ) = nn-rank(Ω,G)(M)

3.3 Separations of the ranks

In Section 3.2 we have seen that some ranks can be upper bounded by others (Theorem
2.13 and 2.14). A natural question is whether these can also be related by a function
depending on the other ranks. To explain this concretely with the ranks given in
Theorem 2.13 (i) let us consider the following problem.

Question 2.15. Given a wsc Ω and a group action G on Ω. Does there exist a function
F : N→N such that

sep-rank(Ω,G)(ρ) ≤ F
(

rank(Ω,G)(ρ)

)
for all ρ ∈ SEPd0,d1,...,dn
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Obviously we have to restrict this question to the set of separable states SEPd0,d1,...,dn ,
since sep-rank(Ω,G)(ρ) = ∞ for non-separable matrices. Nevertheless, the answer to
this question is negative. Similar results appear for other relations as we will show in
the following theorem. We say two ranks show a separation, denoted by�, if one
rank cannot be upper bounded by a function only depending on the other rank.

Theorem 2.16. Let Ω = Λ1 the line of length one (i.e. it contains two vertices) and G be the
trivial group.

(a) The following separations are true for the cone of nonnegative matrices:

(i) rankΛ1 � psd-rankΛ1

(ii) psd-rankΛ1
� sqrt-rankΛ1

(iii) nn-rankΛ1 � sqrt-rankΛ1

(iv) sqrt-rankΛ1
� nn-rankΛ1

(b) The following separations are true for psd matrices:

(i) rankΛ1 � puri-rankΛ1

(ii) puri-rankΛ1
� q-sqrt-rankΛ1

(c) The following separations are true for separable states:

(i) puri-rankΛ1
� sep-rankΛ1

Note that� is a transitive operation, i.e. A� B and B� C implies A� C.

Proof. (a) We show the separations using results from [19].

(i) Let Sd ∈ Md
∼= K2,d be the slack matrix of a d-gon in the plane. Then it holds

rankΛ1(Sd) = 3 for all d ∈N

and
lim
d→∞

nn-rankΛ1(Sd) = ∞.

(ii)-(iii) Let n1, n2, . . . be a sequence of integers such that 2ni − 1 is prime for all i ∈N.
We define the prime matrix Pd ∈ Md

∼= K2,d by

(Pd)i,j = ni + nj − 1

Then it holds

nn-rankΛ1(Pd) = psd-rankΛ1
(Pd) = 2 for all d ∈ Md

and
sqrt-rankΛ1

(Pd) = d for all d ∈N

(iv) Let Md ∈ Md
∼= K2,d be the Euclidean distance matrix, i.e.

(Md)i,j = (i− j)2 for i, j ∈ {1, . . . , d}
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Then it holds

rankΛ1(Md) = psd-rankΛ1
(Md) = sqrt-rankΛ1

(Md) = 2 for all d ∈N

and
nn-rankΛ1(Md) ≥ log2(d) for all d ∈N.

(b) This is immediate due to Theorem 2.12 and (a).

This discussion can be extended to more sophisticated geometries. A construction of
a state which shows a separation between rank and puri-rank on Λn is given in [15].

In the next chapter, we will study these separations from a new perspective. More
precisely, we will show that the separations will disappear in the approximate case
for both psd matrices (Corollary 3.21) and nonnegative tensors (Corollary 3.25).
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Chapter 3

Approximate Decompositions on
Weighted Simplicial Complexes

In Chapter 1 we have seen that most ranks can be upper bounded by a function of
the dimension. For example, for a nonnegative matrix M ∈ Md, we always have

rank(M) ≤ nn-rank(M) ≤ d.

One reason for finding such upper bounds, for example in the case of the matrix rank
or matrix nonnegative rank, is the fact that M is a linear operator on a d-dimensional
vector space. Hence, M can always be considered by its action on linear independent
vectors spanning in the worst case the whole space, which obviously has at most d
elements. This argument holds as long as we can decompose the matrix or tensor into
arbitrary elements of a vector space, but often it cannot be extended when asking for
additional properties of the elements in the decompositions like the local certificate
of positivity.

One structure all spaces with a notion of positivity have in common is the conic
structure of the set of all positive elements. In the case of nonnegative tensors,
we know that for a nonnegative tensor T, the tensor λ · T is again nonnegative
for all λ ≥ 0. This particular structure also implies convexity, in particular, for
nonnegative tensors T, S the convex combination λ ·T +(1−λ) · S is also nonnegative
for 0 ≤ λ ≤ 1.

Hence the set of all nonnegative tensors can be written as a convex combination of a
(possibly infinite) generating set. In this case, the generating set can be chosen as the
infinite set of summands in the decompositions, namely the set of elementary tensors.
By definition of nonnegative tensors, it immediately holds that

K+
n,d = conv

({
v[0] ⊗ · · · ⊗ v[n−1] : v[i] ∈

(
R+
)d for all i ∈ {0, . . . , n− 1}

})
where R+ := [0, ∞).

Analogously, the set of all n-partite separable states can be characterized by convex
combinations of product states, that is,

SEPn,d = conv
({

ρ[0] ⊗ · · · ⊗ ρ[n−1] : ρ[i] ∈ M+
d state for all i ∈ {0, . . . , n− 1}

})
.

This equality holds directly by the definition of separable states, namely, ρ ∈ SEPn,d

if there exist states ρ
[i]
α ∈ M+

d for i ∈ {0, . . . , n− 1}, α ∈ {1, . . . , r} and positive real
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numbers λα summing to 1 such that

ρ =
r

∑
α=1

λα · ρ[0]α ⊗ · · · ⊗ ρ
[n−1]
α .

The integer r is an upper bound of the tensor rank (Definition 2.11) and can also give
upper bounds to various (Ω, G)-ranks.

The famous Carathéodory theorem (see for example [37]) characterizes the maximal
number r (dependent on the ambient space) necessary to write any element of a
convex set as a convex combination of elements in the generator set. Hence, it is of
interest in the study of ranks.

Theorem 3.1 (Carathéodory). Let V be a d-dimensional vector space and S ⊆ V a set.
Further let a ∈ conv(S) be an element of the convex hull generated by S. Then there exist
s0, . . . , sd ∈ S and λ0, . . . , λd ≥ 0 nonnegative real numbers summing to 1 such that

a =
d

∑
i=0

λisi.

In other words, Carathéodory’s theorem guarantees that every element can be written
as a convex combination of at most d + 1 generating points (i.e. elements of the set S).
In the above mentioned examples, the application of Theorem 3.1 implies that every
element in SEPn,d can be written as a convex combination of at most d2n + 1 product
psd matrices and every element in Kn,d can be written as a convex combination of at
most dn + 1 nonnegative elementary tensors. It follows that

nn-rankΣn(M) ≤ d2n + 1

for all nonnegative tensors in M ∈ Kn,d as shown in [14].

The results implied from Carathéodory’s theorem can be used for upper bounds of
(Ω, G)-ranks which are, in general, not optimal. For example, the upper bounds of
the ranks of matrix-factorizations shown in Section 2 of Chapter 1 are smaller than the
upper bounds one would obtain with Carathéodory’s theorem. Nonetheless, we want
to go in another direction concerning approximate decompositions and their ranks.
Specifically, we show in Section 1 an approximate version of Theorem 3.1, which,
roughly speaking, says that there always exists an element ε-close to the original
element which can be written as a convex combination of a number of generating
elements independent of the dimension of the ambient space.

In Section 2, we will define the notions of approximate ranks based on (Ω, G)-ranks
of Chapter 2. Afterwards, we will apply the approximate version of Carathéodory’s
theorem to show that all notions of approximate (Ω, G)-ranks can be upper bounded
independently of the system dimension. These results have a considerable impact
on the study of separations in the approximate case: We will show in Section 3 that
many separations disappear in the approximate case. To end this chapter, we provide
in Section 4 an algorithm to compute an approximate decomposition fulfilling the
dimension independent upper bounds.

This chapter is mainly a review of paper [13].
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1 The approximate Carathéodory Theorem

In this section, we introduce an approximate Carathéodory Theorem for uniformly
smooth Banach spaces to finally derive a version applicable to Schatten p-classes (i.e.
matrix spaces equipped with the Schatten p-norm) and `p-spaces, which will be a
central tool in this chapter. The main result of this section is given in Theorem 3.9
and will be used later in Section 2.

Before starting with the derivation of this theorem, we will introduce some necessary
definitions and notions of approximation.

Recall thatMd denotes the set of complex d× d matrices. Further ‖ · ‖p denotes the
unnormalized Schatten p-norm, in particular, for A ∈ Md we have

‖A‖p := tr(|A|p)1/p =

(
d

∑
i=1

si(A)p

)1/p

, (3.1)

where |A| :=
√

A† A is the psd square root of A† A. Moreover, {si(A)}d
i=1 denotes the

set of singular values of A. Note that the definition in (3.1) is a norm for 1 ≤ p < ∞.
Note that this norm can be written for A hermitian as

‖A‖p =

(
d

∑
i=1
|λi(A)|p

)1/p

where {λi(A)}d
i=1 denotes the set of all eigenvalues of A. The Schatten p-norm has a

broad spectrum of applications for different values of p as we will see in the following
example.

Example 3.2. Let A ∈ Md be a hermitian matrix.

(i) The Schatten 1-norm

‖A‖1 =
d

∑
i=1
|λi(A)|

is called the trace-norm and can be used to characterize the set of density matrices as
all psd matrices in the unit ball with respect to ‖ · ‖1.

(ii) The Schatten 2-norm can be equivalently written as

‖A‖2 =
√

tr(A† A).

It is the norm induced by the Hilbert-Schmidt inner product 〈A, B〉 := tr(A†B). Note
that the Schatten 2-norm is the only Schatten norm induced by an inner product.

(iii) The Schatten ∞-norm

‖A‖∞ = lim
p→∞
‖A‖p = max

i
|λi(A)|

is equal to the operator norm of A and hence important in the study of C∗-algebras.

The visualization of the different unitballs concerning the corresponding eigenvalues
in the case of d = 2 is shown in Figure 3.1. 4

Before showing a version of the approximate Carathéodory Theorem for matrix
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FIGURE 3.1: Unit balls of the eigenvalues in the space of all hermitian
2× 2 matrices for the different values of p studied in Example 3.2.

spaces equipped with the Schatten p-norm, we will start with a more general version
of the approximate Carathéodory Theorem valid for a larger class of Banach spaces,
namely the class of uniformly smooth Banach spaces. This class can be characterized,
roughly speaking, as the class of all vector spaces equipped with a differentiable
norm.

1.1 On uniformly smooth Banach spaces

We start with a version of the approximate Carathéodory Theorem [26], which holds
for uniformly smooth Banach spaces. We start with the definition of the notion
of uniformly smooth. Also, we introduce the modulus of smoothness, which will be
necessary later on.

Definition 3.3. Let X with ‖ · ‖ be a Banach space. The modulus of smoothness
ρX : [0, ∞]→ [0, ∞] is given by

ρX(t) := sup
{

1
2

(
‖x + ty‖+ ‖x− ty‖

)
− 1 : ‖x‖ = ‖y‖ ≤ 1

}
for t ∈ [0, ∞].

A Banach space is called uniformly smooth if ρX(t) = o(t), i.e. ρX(t)/t→ 0 as t→ 0.

Note that a finite-dimensional Banach space X with ‖ · ‖ is uniformly smooth if and
only if for all x, y ∈ X with ‖x‖ = ‖y‖ = 1 the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

exists. In other words, for all x 6= 0 all directional derivatives of the norm exist [28].
This implies that the unit ball of uniformly smooth spaces is smooth.

Note that ρX is convex, strictly increasing and ρX(0) = 0. The first property is
an immediate consequence of the triangle inequality applied to ‖ · ‖. The second
property follows from the fact that ρX(ε) > 0 for ε > 0 and the convexity of ρX. These
three characteristics imply that there exists the inverse function ρ−1

X .

Theorem 3.4 (Approximate Carathéodory [26]). Let S be a bounded set in a uniformly
smooth Banach space X equipped with the norm ‖ · ‖, and a ∈ conv(S). Then there exists a
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sequence {xi}∞
i=1 ⊆ S such that for ak =

1
k ∑k

i=1 xi the following inequality holds

‖a− ak‖ ≤
2 exp(2)

k · ρ−1
X (1/k)

· diam(S)

where ρX(·) is the modulus of smoothness.

Note that Theorem 3.4 gives an upper bound for the approximation error independent
of a, and the only dependence on the space X is given through the diameter of S and
the inverse of the modulus of smoothness. We will see that for the particular case
of X =Md equipped with the Schatten p-norm the upper bound is also dimension
independent.

1.2 On Schatten-classes

In the following, we denote the modulus of smoothness ofMd with Schatten p-norm
by ρp(·). We now want to evaluate an upper bound for the expression 1/ρ−1

p (1/k)
following [26, 27] to finally give a version of the approximate Carathéodory theorem
valid for Schatten p-classes.

A necessary tool for the following calculation are Hanner’s inequalities.

Theorem 3.5 (Hanner’s inequalities for Schatten norms [1]). Let A, B ∈ Md. For
4 ≤ p < ∞ the following inequality holds:(

‖A‖p + ‖B‖p

)p
+
∣∣∣‖A‖p − ‖B‖p

∣∣∣p ≥ ‖A + B‖p
p + ‖A− B‖p

p.

For 1 ≤ p ≤ 4/3 the inequality is reversed and for p = 2 equality holds.

Note that this theorem is an extension of the original Hanner’s inequalities for `p-
spaces, i.e. spaces X = Cd equipped with the entrywise p-norm [27]. It is widely
believed that Theorem 3.5 is valid for 1 < p < ∞ similar to the `p case. Nonetheless,
it is only proven on this restricted range of p for all matrices. Before showing upper
bounds for ρp(t) we want to prove some necessary inequalities in the following
preliminary lemma.

Lemma 3.6. Let a, b ≥ 0, 0 ≤ t ≤ 1 and p ≥ 1, q ≥ 2. Then the following inequalities are
true:

(i) (a + b)p ≤ 2p−1(ap + bp)

(ii) (1 + tp)1/p − 1 ≤ tp

p

(iii)
(
(1 + t)q + (1− t)q

2

)1/q

− 1 ≤ q− 1
2

t2

Proof. (i) Since x 7→ xp is convex on [0, ∞] for p ≥ 1 we have for a, b ≥ 0:(
1
2

a +
1
2

b
)p

≤ 1
2
(ap + bp).

Multiplying both sides with 2p shows the statement.
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(ii) Set

f (t) =
(

1 +
tp

p

)p

− (1 + tp).

We have to show that f (t) ≥ 0 for all t ≥ 0. It obviously holds that f (0) = 0 and

f ′(t) =

[(
1 +

tp

p

)p−1

− 1

]
· p · tp−1 ≥ 0

Hence f (t) ≥ 0 for all t ≥ 0.

(iii) Let 0 ≤ t ≤ 1. Then the statement follows from a particular version of the
hypercontractivity inequality (see for example Lemma 1 in [2]) which reads(

(1 + ρ · ε)q + (1− ρ · ε)q

2

)1/q

≤
(
(1 + ε)p + (1− ε)p

2

)1/p

⇐⇒ ρ2 ≤ p− 1
q− 1

for all ρ, ε ≥ 0. Setting t = ρ · ε, p = 2 and ρ2 = 1/(q− 1) we obtain(
(1 + t)q + (1− t)q

2

)1/q

≤
(
(1 + ε)2 + (1− ε)2

2

)1/2

=
(
1 + ε2)1/2 ≤ 1 +

ε2

2
= 1 +

q− 1
2
· t2

This shows the statement.

Corollary 3.7. The following inequalities hold for 0 ≤ t ≤ 1:

ρp(t) ≤


1
p · tp if 1 ≤ p ≤ 4/3

p−1
2 · t2 if p = 2 or 4 ≤ p < ∞

This implies that for 1 < p ≤ 4/3, p = 2 and 4 ≤ p < ∞,Md equipped with the Schatten
p-norm is uniformly smooth. Furthermore,Md with the Schatten 1-norm is not uniformly
smooth.

Proof. (i) Let 1 ≤ p ≤ 4/3. To show the inequality, we apply Hanner’s inequality for
A := X + tY and B := X− tY and Lemma 3.6 to obtain

ρp(t) = sup
{

1
2
(‖X + tY‖p + ‖X− tY‖p)− 1 : ‖X‖p = ‖Y‖p = 1

}

≤ (1 + tp)1/p − 1 ≤ tp

p
.
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(ii) Let p = 2 or 4 ≤ p < ∞. Using Lemma 3.6 (i), (iii) and Hanner’s inequality for
A := X and B := tY we obtain

ρp(t) = sup
{

1
2
(‖X + tY‖p + ‖X− tY‖p)− 1 : ‖X‖p = ‖Y‖p = 1

}

≤ sup


(
‖X + tY‖p

p + ‖X− tY‖p
p

2

)1/p

− 1 : ‖X‖p = ‖Y‖p = 1


≤
(
(1 + t)p + |1− t|p

2

)1/p

− 1 ≤ p− 1
2
· t2.

To prove that the Schatten 1-class is not uniformly smooth we refer to the `p-case
(see [27] for details).

Using the fact that the modulus of smoothness is increasing with t and upper bounded
by a power of t, we can formulate the approximate Carathéodory Theorem for several
Schatten classes with an upper bound independent of the modulus of smoothness.

Theorem 3.8 (Approximate Carathéodory for Schatten classes). Let S be a bounded
set inMd equipped with Schatten p-norm, where 1 < p ≤ 4/3, p = 2 or 4 ≤ p < ∞,
and A ∈ conv(S). Then there exists a sequence {Xi}∞

i=1 ⊆ S such that for the convex
combination

Ak =
1
k

k

∑
i=1

Xi

the following inequalities hold:

(a) ‖A− Ak‖p ≤
2 exp(2)

p1/p · k1/p−1 · diam(S) if 1 < p ≤ 4/3

(b) ‖A− Ak‖p ≤ exp(2) ·
√

2(p− 1)
k

· diam(S) if p = 2 or 4 ≤ p < ∞

Proof. Using the fact that ρp is increasing in its argument, and Theorem 3.4 together
with the fact that 0 ≤ 1/k ≤ 1 for k ∈N, we obtain

ρ−1
p (1/k) ≥


p
√

p
k if 1 < p ≤ 4/3

√
2

k·(p−1) if p = 2 or 4 ≤ p < ∞

This proves the statement.

Note that the proof of Theorem 3.4 is constructive, hence the elements of the sequence
{Xi}∞

i=1 can be computed by a deterministic algorithm. We will study this more
thoroughly in Section 4.

By fixing some approximation error ε > 0 and p, the previous result can be equiv-
alently formulated as an upper bound on the number of summands k necessary to
attain an ε-approximation with respect to the Schatten p-norm.
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Theorem 3.9. Let S ⊆ Md be bounded, A ∈ conv(S) and ε > 0 be given. Then in the
ε-ball with respect to the Schatten p-norm around A there is a point B which is a convex
combination of at most

(a)

⌈
Cp ·

(
diam(S)

ε

) p
p−1
⌉

if 1 < p ≤ 4/3

(b)

⌈
Dp ·

(
diam(S)

ε

)2
⌉

if p = 2 or 4 ≤ p < ∞

points from S, where

Cp :=
(

2 exp(2)
p1/p

) p
p−1

and Dp := 2(p− 1) · exp(4).

Proof. It follows directly from Theorem 3.8.

Let us highlight the main features of Theorem 3.9. For a fixed approximation error
ε > 0 and a norm parameter p, the above theorem differs from Theorem 3.1 only by
the fact that we consider approximations. In both cases (a) and (b), we obtain, in
contrast to Theorem 3.1, a dimension independent upper bound. Further, the upper
bound is best for p = 2 and increases up to infinity for fixed ε > 0 if we approach
p = 1. Further, the bounds also diverge if we take the limit ε → 0 for arbitrary p,
which is reasonable since the dimension dependent upper bound of Theorem 3.1 is
optimal. Hence, for applying this result, the approximation error has always to be
fixed.

The above discussion can be repeated for entrywise `p-norms which will be important
as a natural norm later on for nonnegative tensors.

Remark 3.10. If we assume that Md is equipped with the `p-norm ‖ · ‖`p , i.e. for
A ∈ Md we have

‖A‖`p :=

(
d

∑
i,j=1
|Aij|p

)1/p

,

then the upper bounds of Theorem 3.8 and Theorem 3.9 hold for 1 < p ≤ 2 and
p ≥ 2, instead of 1 < p ≤ 4/3 and 4 ≤ p < ∞, respectively. This is due to the fact
that Hanner’s inequalities are proven for 1 < p < ∞ in `p-spaces [27]. 4

2 Approximate (Ω, G)-decompositions and ranks

In the following, we will define the notions of approximate (Ω, G)-decompositions
for both psd matrices and nonnegative tensors. We will also apply the results from
Section 1 to obtain upper bounds for ranks of approximate (Ω, G)-decompositions.

The section is organized as follows. In Section 2.1 and Section 2.2, we define the
approximate analogs of the (Ω, G)-ranks for psd matrices and nonnegative tensors,
respectively. In Section 2.3, we introduce the notion of gauge functions, a relevant
tool to obtain the upper bounds. Subsequently, we show upper bounds for general
matrices (Section 2.4), psd matrices (Section 2.5), and separable states (Section 2.6).
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As before we consider

Md0 ⊗Md1 ⊗ · · · ⊗Mdn
∼=Md0···dn .

Further we fix a connected wsc Ω and a free group action G on Ω.

2.1 Approximate decompositions of psd matrices

In this part, we introduce the different notions of approximate (Ω, G)-ranks in the
spaceMd0 ⊗ · · · ⊗Mdn . Given a matrix ρ, the notion of the approximate rank is the
minimal rank of all matrices contained in the ε-ball of ρ with respect to the Schatten
p-norm ‖ · ‖p.

Definition 3.11. Let p ∈ [1, ∞) and ε > 0. Further let M ∈ Md0 ⊗ · · · ⊗Mdn and
ρ ∈ M+

d0···dn
. We define

rankε,p
(Ω,G)

(M) := min
{

rank(Ω,G)(N) : ‖M− N‖p ≤ ε, N ∈ Md0···dn

}
,

similarly

puri-rankε,p
(Ω,G)

(ρ) := min
{

puri-rank(Ω,G)(σ) : ‖ρ− σ‖p ≤ ε, σ ∈ Md0···dn

}
and

q-sqrt-rankε,p
(Ω,G)

(ρ) := min
{

q-sqrt-rank(Ω,G)(σ) : ‖ρ− σ‖p ≤ ε, σ ∈ Md0···dn

}
.

If ρ is separable, we define

sep-rankε,p
(Ω,G)

(ρ) := min
{

sep-rank(Ω,G)(σ) : ‖ρ− σ‖p ≤ ε, σ ∈ Md0 ⊗ · · · ⊗Mdn

}
.

Note that the exact purification rank and quantum square root rank are infinite if σ is
not psd. Hence, an approximate purification and quantum square root decomposition
is always attained by a psd matrix. This behavior is similar for the separable rank.

Further note that puri-rankε,p
(Ω,G)

and q-sqrt-rankε,p
(Ω,G)

can, in principle, also be defined
for non-psd matrices and might be finite. This is due to the fact that in particular
cases the ε-ball around a non-psd matrix can contain a psd matrix which has a
finite purification rank. Similar sep-rankε,p

(Ω,G)
can also be defined for non-separable

matrices. Let us now go back again to Example 2.2 and Example 2.4, and explain the
notions of approximate ranks on the cases therein.

A different notion in the study of approximate ranks is the notion of border rank,
which is the minimal k ∈ N among all possible sequences (ρn)n∈N consisting of
rank-k matrices ρn converging to ρ [5]. As already pointed out, the upper bounds
given in Theorem 3.8 diverge for ε→ 0. Hence the approach using the approximate
Carathéodory Theorem fails when studying these notions of ranks.

In the following example, we will give some examples of approximate decompositions
related to the relevant decompositions introduced and studied in Chapter 1 and
Chapter 2.
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Example 3.12. Let M ∈ Md0···dn , ε > 0 and p ∈ [1, ∞).

(i) An approximate Σn-decomposition (i.e. a decomposition corresponding to the
n-simplex defined in Example 2.4) is given by a matrix N ∈ Md0···dn admitting a
decomposition

N =
r

∑
α=1

N[0]
α ⊗ · · · ⊗ N[n]

α

with ‖M− N‖p ≤ ε. The approximate Σn-rank, rankε,p
Σn
(ρ), is called approximate tensor

rank of M and is the smallest integer r among all matrices N in the ε-ball of M and all
Σn-decompositions.

(ii) Consider the line Ω = Λn of length n. The approximate operator Schmidt rank,
rankε,p

Λn
(M), is the minimal integer r among all N ∈ Md0···dn with ‖M − N‖p ≤ ε

and all decompositions of the matrix product operator form with open boundary
conditions.

(iii) For n ≥ 3 consider the circle Ω = Θn of length n together with the cyclic
group G = Cn whose elements are translations of the points on the line. Further let
M ∈ Mdn be Cn-invariant. In this example Cn-invariance corresponds to translational
invariance of M. The approximate translational invariant operator Schmidt rank of M,
rankε,p

(Θn,Cn)
(M), is the minimal integer r among all N ∈ Mdn with ‖M − N‖p ≤ ε

and all decompositions of N of the translational invariant matrix product operator
form. 4

2.2 Approximate decompositions of nonnegative tensors

In the following, we define the notions of approximate (Ω, G)-ranks similar to Section
2.1 using the exact (Ω, G)-decompositions defined in Section 2.3 of Chapter 2. The
only difference in the definition of the approximate ranks is the norm used.

Motivated by the correspondence between psd matrices and nonnegative tensors
given in Equation (2.3), we will use for p ≥ 1 the `p-norm which is defined for
M ∈ Kn,d as

‖M‖`p =

(
∑

i0,...,in

|mi0,...,in |p
)1/p

.

For this reason, this norm is sometimes also called the entrywise p-norm. Since in
the following definition of the approximate (Ω, G)-decompositions of nonnegative
tensors the relevant norm is the `p-norm, we will indicate this fact by using `p instead
of p.

Definition 3.13. Let p ∈ [1, ∞), ε > 0 and M ∈ K. We define

rankε,`p

(Ω,G)
(M) := min

{
rank(Ω,G)(N) : ‖M− N‖`p ≤ ε, N ∈ K

}
.

If M is nonnegative, we similarly define

nn-rankε,`p

(Ω,G)
(M) := min

{
nn-rank(Ω,G)(N) : ‖M− N‖`p ≤ ε, N ∈ K

}
,

psd-rankε,`p

(Ω,G)
(M) := min

{
psd-rank(Ω,G)(N) : ‖M− N‖`p ≤ ε, N ∈ K

}
,
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and

sqrt-rankε,`p

(Ω,G)
(M) := min

{
sqrt-rank(Ω,G)(N) : ‖M− N‖`p ≤ ε, N ∈ K

}
.

Note that similar to the psd matrices, the latter three notions of ranks can also be
defined for general elements in K. In the following example, we want to relate the
approximate tensor decompositions with the matrix factorizations introduced in
Chapter 1.

Example 3.14. Let Λ1 be the line of length one and G = S2 the symmetric group
acting on Λ1. Further let M ∈ K2,d

∼=Md be nonnegative.

(i) An approximate Λ1-decomposition of M is given by a tensor N ∈ K2,d in the
ε-ball of M and a decomposition

N =
r

∑
α=1

v[0]α ⊗ v[1]α .

This decomposition corresponds to a minimal factorization of N = A · BT (Definition
1.12) setting the column α of A and B to v[0]α and v[1]α , respectively.

(ii) An approximate (Λ1, G)-decomposition of a symmetric matrix M corresponds
to a symmetric matrix N ∈ K2,d

∼=Md in the ε-ball of M and a decomposition.

N =
r

∑
α=1

vα ⊗ vα.

This decomposition corresponds to the symmetric factorization N = A · AT (Defini-
tion 1.16) associating the column α of A with vα.

(iii) An approximate Λ1-nonnegative decomposition corresponds to a nonnegative
element N ∈ K2,d in the ε-ball of M and a nonnegative factorization of N (Definition
1.13). Similarly, an approximate (Λ1, G)-nonnegative decomposition corresponds to
an approximate version of the completely positive factorization (Definition 1.16 (ii)).

(iv) An approximate Λ1-psd-decomposition corresponds to a nonnegative element
N ∈ K2,d in the ε-ball of M and a psd-factorization (Definition 1.14)

Nkl =
r

∑
α0,α1=1

(
A[0]

k

)
α0,α1
·
(

A[1]
l

)
α0,α1

= tr
((

A[0]
k

)
·
(

A[1]
l

)T
)

.

An approximate (Λ1, G)-psd-decomposition corresponds to an approximate version
of the cpsdt-factorization (Definition 1.16 (iii)) setting Ak := A[0]

k = A[1]
k .

4

In Example 3.27, we will illustrate the behavior of these ranks.
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2.3 More norms for matrices

As we have already seen in the introduction of this chapter, the central idea which
makes Carathéodory’s Theorem and its approximate analog applicable is the fact
that we can associate every convex cone - such as the set of psd matrices or the set of
nonnegative tensors - with a convex hull generated infitiely many elementary tensors
which define the summands in the different decompositions. In contrast to the exact
Carathéodory Theorem, in the approximate version (Theorem 3.8), the generating set
of the convex hull has to be bounded; in particular, the distance between all elements
in the generating set has to be bounded. Hence, elements have to be normalized with
a particular norm to associate them to an element of the convex hull generated by a
bounded set.

In this section, we introduce and study the gauge function as a norm, which is
convenient for fulfilling the properties mentioned above. In particular, we introduce
a bounded convex set and reconstruct a norm whose unit ball is equivalent to the
convex set. We start with some preparatory observations and definitions.

For the (non-scaled) Schatten norms, where 1 ≤ p ≤ q ≤ ∞, we have the following
inequalities [38]:

‖M‖q ≤ ‖M‖p ≤ rank(M)
1
p−

1
q ‖M‖q. (3.2)

Further, we define for any 1 ≤ p ≤ ∞ the generating set

Pp :=

{
±ρ[0] ⊗ · · · ⊗ ρ[n] : ρ[i] ∈ M+

di
for i ∈ {0, . . . , n} and ‖

n⊗
i=0

ρ[i]‖p ≤ 1

}

and consider the convex hull

Bp := conv(Pp) ⊆ Herd0···dn

where Herd ⊆Md denotes the set of hermitian d× d matrices.

Note that for p ≤ q, we have Bp ⊆ Bq, and already B1 contains all separable states
since all product matrices in the unit ball of the Schatten 1-norm are valid states. Each
Bp is compact (i.e. closed and bounded with respect to the Schatten norm) and as a
convex hull obviously convex. Furthermore, Bp is centrally symmetric (i.e. if ρ ∈ Bp
then −ρ ∈ Bp) and hence by convexity it contains the origin in its interior. We can
thus understand it as the unit ball of a norm: For a set S in a real vector space V, the
gauge function µS is defined by

µS(v) := inf
{

λ > 0 | 1
λ

v ∈ S
}

(3.3)

for v ∈ V. If S is compact, convex, centrally symmetric and has nonempty interior,
the gauge function µS is in fact a norm (see for example Theorem 15.2 in Ref. [32]),
and S is clearly its unit ball.

In the following, we denote the gauge function of Bp by µp for all 1 ≤ p < ∞. We
now want to relate the gauge functions to a multipartite version of the robustness of
entanglement [35].
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ρ

ρ1ρ2

Herd0···dn

SEPd0,...,dn

FIGURE 3.2: Visualization of the robustness of entanglement.

Definition 3.15. Let ρ ∈ Md0 ⊗ · · · ⊗Mdn be a state. The robustness of entanglement
of ρ is defined as

R(ρ) := inf
{

λ ≥ 1 : ρ = (1− λ) · ρ1 + λ · ρ2 and ρi are separable states
}

.

A visualization of this relation is shown in Figure 3.2.

Note that this definition varies from the original definition by a additive constant of
1. Obviously, R(ρ) < ∞ for all hermitian matrices ρ since all hermitian matrices can
be written as linear combinations of elements contained in Pp.

Proposition 3.16. For ρ ∈ Herd0 ⊗ · · · ⊗Herdn
∼= Herd0···dn and 1 ≤ p ≤ q < ∞ we

have:

(i) ‖ρ‖p ≤ µp(ρ).

(ii) µq(ρ) ≤ µp(ρ) ≤ (d0 · · · dn)1/p−1/q · µq(ρ).

(iii) If ρ is a separable state, then µp(ρ) ≤ 1.

(iv) If ρ is a state, then R(ρ) ≤ µ1(ρ) ≤ 2R(ρ).

(v) Define µ√,p(v) = min
{

µp(
√

v)
}

. If v2 = v then µ√,p(v) ≤ µp(v).

Proof. Since the unit ball of the Schatten p-norm contains Pp and is convex, it contains
Bp. This implies that ‖ρ‖p ≤ µp(ρ), which shows statement (i).

(ii) The first inequality is a consequence of the fact that we have for the corresponding
unit balls Bp ≤ Bq. The second inequality is a direct implication of relation (3.2).

(iii) is clear from the fact that ρ ∈ B1 together with (ii).

For the first inequality in (iv) we express

1
µ1(ρ)

ρ = ∑
i

λiξi
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as a convex combination of elements ξi ∈ P1, with all λi > 0, ‖ξi‖ > 0. From the
minimality of µ1(ρ) it follows that ‖ξi‖1 = 1 holds for all i. Sorting the positive and
negative terms we obtain

1
µ1(ρ)

ρ = rσ1 − (1− r)σ2

with separable states σi, where 0 ≤ r ≤ 1 is the sum over those λi with ξi psd.
Taking the trace on both sides shows 2µ1(ρ)r = 1 + µ1(ρ). Thus λ := µ1(ρ)r yields
ρ = (1− λ)σ2 + λσ1 and thus R(ρ) ≤ µ1(ρ).

For the second inequality, we express ρ = (1− λ)ρ1 + λρ2 where ρi are separable
states and λ ≥ 1. Since µ1(ρi) ≤ 1, the second inequality follows from the triangle
inequality for µ1.

(v) Immediate from the definition.

2.4 Upper bounds for approximate ranks

We now prove an upper bound for the approximate (Ω, G)-rank which only depends
on the gauge function value of the matrix and the approximation error ε.

Recall that a matrix M ∈ Herd0 ⊗ · · · ⊗ Herdn
∼= Herd0···dn is G-invariant if it is

invariant with respect to the group action G which contains permutations of the local
tensor product spaces.

Theorem 3.17. Let 1 < p ≤ 4/3, p = 2 or 4 ≤ p < ∞ and ε > 0. Assume that
M ∈ Herd0 ⊗ · · · ⊗Herdn

∼= Herd0···dn is G-invariant. Then

(a) rankε,p
(Ω,G)

(M) ≤
⌈

Cp ·
(

2µp(M)

ε

) p
p−1
⌉
· |G| if 1 < p ≤ 4/3

(b) rankε,p
(Ω,G)

(M) ≤
⌈

Dp ·
(

2µp(M)

ε

)2
⌉
· |G| if p = 2 or 4 ≤ p < ∞

The proof consists of two ingredients. First, we apply Theorem 3.9 with set Pp to
construct a Ω-decomposition. Afterwards, we obtain a decomposition containing
G-invariant elements by applying the construction in the proof of [12, Thm. 13].

Proof. First let p = 2 or 4 ≤ p < ∞. We prove the statement for the case that
µp(M) = 1; the general case follows by replacing M with M/µp(M). First we con-
sider the case of trivial group action. By assumption M ∈ conv(Pp), and diam(Pp) = 2.
By Theorem 3.9 we find an M′ such that ‖M−M′‖p ≤ ε and where M′ is a convex
combination of at most d4Dp/ε2e elements of Pp. This implies that

rankΩ(M′) ≤ rankΣn(M′) ≤ d4Dp/ε2e,

where the first inequality follows from [12, Prop. 36]. We now involve a group action
and apply the construction of [12, Thm. 13] to M′. This procedure gives rise to an
(Ω, G)-decomposition of an element M′′ = 1

|G| ∑g gM′ with

rank(Ω,G)(M′′) ≤ d4Dp/ε2e · |G|.



2. Approximate (Ω, G)-decompositions and ranks 59

It remains to prove that M′′ is contained in the ε-neighborhood of M:

‖M′′ −M‖p =

∥∥∥∥∥ 1
|G|∑g

(gM′ − gM)

∥∥∥∥∥
p

≤ 1
|G|∑g

‖gM′ − gM‖p ≤ ε

where we used the invariance M = 1
|G| ∑g gM, that the norm is unitarily invariant

‖gM′ − gM‖p = ‖M′ −M‖p, and that M′ is in the ε-ball around M. The other case,
1 < p ≤ 4/3, is analogous.

Remark 3.18. Note that Theorem 3.17 and all following theorems give upper bounds
for particular convex combinations of the type

Mk =
1
k

k

∑
i=1

Xi,

where Xi ∈ Pp. This is due to the construction in Theorem 3.8. Hence, the sequence
{Xi}k

i=1 might contain a repetition of same elements which would decrease the rank
of the decomposition, but our estimates do not exploit this fact. 4

2.5 Upper bounds for approximate ranks of psd matrices

We now provide upper bounds for the approximate purification rank and the approx-
imate quantum square root rank of psd matrices. More specifically, we provide an
upper bound for the approximate quantum square root rank, which upper bounds
the approximate purification rank due to Remark 2.9 (i).

Recall that Ω is a connected wsc and G a free group action on Ω.

Corollary 3.19. Let 1 < p ≤ 4/3, p = 2 or 4 ≤ p < ∞ and ε > 0. Let ρ ∈ M+
d0···dn

be
G-invariant. Then

(a) puri-rankε,p
(Ω,G)

(ρ) ≤

Cp ·
(

2√
1+ε/µ2√,p(ρ)−1

) p
p−1
 · |G| if 1 < p ≤ 4/3

(b) puri-rankε,p
(Ω,G)

(ρ) ≤

Dp ·
(

2√
1+ε/µ2√,p(ρ)−1

)2
 · |G| if

p = 2 or
4 ≤ p < ∞

and the same upper bounds hold for q-sqrt-rankε,p
(Ω,G)

.

Proof. We apply Theorem 3.17 to the square root of ρ (called M) which realises
µ√,p(ρ). We have that M/µ√,p(ρ) ∈ conv(P) and thus ‖M‖p ≤ µ√,p(ρ) (defined in
Proposition 3.16 (v)). We now choose an element M′ which is µ√,p(ρ) · δ - close to M
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with δ =
√

1 + ε/µ2√,p(ρ)− 1. We define ρ′ = M′2 and compute

‖ρ− ρ′‖p = ‖M2 −M′2‖p = ‖M−M′‖p · ‖M + M′‖p

≤ ‖M−M′‖p · (2‖M‖p + ‖M−M′‖p)

≤ µ√,p(ρ)
2 · δ · (2 + δ) ≤ ε.

Using that (see Theorem 2.13 (iv) and Definition 2.8 (ii))

puri-rank(Ω,G)(ρ
′) ≤ q-sqrt-rank(Ω,G)(ρ

′) ≤ rank(Ω,G)(M′)

we obtain the result.

Note that this result upper bounds the quantum square root rank, which might be
arbitrarily larger than the purification rank (see Theorem 2.16 (b) for details).

2.6 Upper bounds for approximate ranks of separable states

An upper bound for separable states can be obtained without the use of a gauge
function. This is possible because a separable state is in the convex hull of{

+ρ[0] ⊗ · · · ⊗ ρ[n] : ρ[i] ∈ M+
di

and ‖
n⊗

i=0

ρ[i]‖p ≤ 1

}
⊆ Pp.

Using that sep-rank(Ω,G) upper bounds rank(Ω,G) and puri-rank(Ω,G), we conclude
that this upper bound holds for the other two ranks in the approximate case too.
Recall that Ω is a connected wsc and G a free group action on Ω.

Proposition 3.20. Let 1 < p ≤ 4/3, p = 2 or 4 ≤ p < ∞ and ε > 0. Further let
ρ ∈ SEPd0,...,dn be G-invariant. Then

(a) sep-rankε,p
(Ω,G)

(ρ) ≤
⌈

Cp · (2/ε)
p

p−1

⌉
· |G| if 1 < p ≤ 4/3

(b) sep-rankε,p
(Ω,G)

(ρ) ≤
⌈

Dp · (2/ε)2
⌉
· |G| if p = 2 or 4 ≤ p < ∞

The same upper bound holds for rankε,p
(Ω,G)

(ρ) and puri-rankε,p
(Ω,G)

(ρ), too.

Proof. It is proven exactly as Theorem 3.17 by using that separable states are a convex
combination of product states, which are a subset of Pp. The rest is an immediate
consequence of Theorem 2.13 (i) and (ii).

Note again that the separable rank may be arbitrarily larger than the rank and the
purification rank, as we have already seen in Theorem 2.16 (c).
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3 Disappearance of separations in the approximate case

We now turn to study relations between the different notions of ranks, especially their
(lack of) separations in the approximate case.

Let X be an arbitrary set and f , g : X → N two functions. We say that there is a
separation between f and g, and write f � g, if there exists a sequence in X along
which f is bounded but g is not. This implies that the values of g cannot be bounded
by a function of the values of f . In the exact case, there are several examples of
separations between different ranks — for example on the set

X :=
⋃

d∈N

M+
dn+1

one has rank(Ω,G) � puri-rank(Ω,G), for suitable choices of (Ω, G) [12, 14, 19]. In the
following, we will show that many separations of ranks of psd matrices disappear
(Section 3.1), and the same happens for nonnegative tensors (Section 3.2). This is an
immediate consequence of the fact that the approximate ranks admit upper bounds
independent of the dimension. We denote this behavior by 6�. In other words, we
have f 6� g if there exists a function F : N→N such that g ≤ F ◦ f where ◦ denotes
the composition of functions.

As in the previous section, we again fix a connected wsc Ω and a free group action G
acting on Ω.

3.1 Positive semidefinite matrices

In the following, we show that the separation between several ranks of psd matrices
vanishes in the approximate case. The strategy is simple: we use Theorem 3.17,
Proposition 3.20 and Corollary 3.19 to upper bound the ranks independently of
the matrix dimension. Since all ranks are bounded functions, it follows that many
separations vanish.

For simplicity we assume that di = d and hence consider the space

Md ⊗ · · · ⊗Md
∼=Mdn+1

where the number of tensor product spaces n + 1 keeps fixed. The result can be
extended in a straightforward manner to the case that the local vector spaces of the
tensor product have different dimensions.

Corollary 3.21. Let ε > 0, K ∈N and 1 < p ≤ 4/3, p = 2 or 4 ≤ p < ∞. We define the
set

XK := {ρ ∈ M+
dn+1 : d ∈N and µ√,p(ρ) ≤ K}.

Then the following holds on XK:

(i) rankε,p
(Ω,G)

6� puri-rankε,p
(Ω,G)

(ii) puri-rankε,p
(Ω,G)

6� q-sqrt-rankε,p
(Ω,G)
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Further, we define the set
Xsep :=

⋃
d∈N

SEPn,d.

The following holds on Xsep:

(iii) rankε,p
(Ω,G)

6� sep-rankε,p
(Ω,G)

(iv) puri-rankε,p
(Ω,G)

6� sep-rankε,p
(Ω,G)

Note that (i) and (ii) imply that rankε,p
(Ω,G)

6� q-sqrt-rankε,p
(Ω,G)

on XK.

Proof. (i)-(ii) For ρ ∈ M+
dn+1 we have rank(Ω,G)(ρ) ≤ puri-rank(Ω,G)(ρ)

2 [12, Prop. 29].
By the basic properties of q-sqrt-rank(Ω,G) (see Remark 2.9 (i) for details) we obtain√

rankε,p
(Ω,G)

(ρ) ≤ puri-rankε,p
(Ω,G)

(ρ) ≤ q-sqrt-rankε,p
(Ω,G)

(ρ).

Since Corollary 3.19 upper bounds q-sqrt-rankε,p
(Ω,G)

by a constant which is indepen-
dent of the dimension of ρ ∈ XK, all these ranks mentioned above are upper bounded
on XK.

(iii)-(iv) Let ρ ∈ Xsep. Using again [12, Prop. 29] we have that

rankε,p
(Ω,G)

(ρ) ≤ sep-rankε,p
(Ω,G)

(ρ),

puri-rankε,p
(Ω,G)

(ρ) ≤ sep-rankε,p
(Ω,G)

(ρ).

By Proposition 3.20 sep-rank(Ω,G) is upper bounded by a constant which is again
independent of the dimension of ρ.

Note that the previous result is not making any statement about the Schatten 1-norm,
since the approximate Carathéodory Theorem is not applicable for this case. Using
the results from Theorem 3.17, Proposition 3.20 and Equation (3.2), we now give an
upper bound for the approximate rank and approximate separable rank in Schatten
1-norm, which is however dimension dependent.

Corollary 3.22. Let M ∈ Herdn+1 and ρ ∈ SEPn,d both be G-invariant. Then:

(i) rankε,1
(Ω,G)

(M) ≤ dn+1 · rankε,2
(Ω,G)

(M) ≤
⌈

D2 ·
(

2µp(M)

ε

)2
⌉
· |G| · dn+1

(ii) sep-rankε,1
(Ω,G)

(ρ) ≤ dn+1 · sep-rankε,2
(Ω,G)

(ρ) ≤
⌈

D2 · (2/ε)2⌉ · |G| · dn+1

Proof. Let A, Ak ∈ Mdn+1 ,S ⊆ Mdn+1 be chosen as in Theorem 3.8. Using Equation
(3.2) and optimizing over all valid p-values gives the bound

‖A− Ak‖1 ≤
√

dn+1 · ‖A− Ak‖2,

or equivalently

‖A− Ak‖1 ≤ ε if k ≥ dn+1 ·
⌈

D2 ·
(

diam(S)
ε

)2
⌉

.



3. Disappearance of separations in the approximate case 63

Applying this statement in the proofs of Theorem 3.17 and Proposition 3.20 shows
the statement.

Example 3.23. We now apply Corollary 3.22 to the running examples of Example 2.2
and Example 3.12.

(i) Consider the line Ω = Λn of size n and G the trivial group. Then for the approxi-
mate operator Schmidt rank in Schatten 1-norm of ρ ∈ M+

dn+1 it holds that

rankε,1
Λn
(ρ) ≤

⌈
D2 ·

(
2µ2(ρ)

ε

)2
⌉
· dn+1.

If ρ ∈ SEPn,d, then
sep-rankε,1

Λn
(ρ) ≤ dD2 · (2/ε)2e · dn+1.

Note that in the exact case rankΛn is also bounded by a constant times dn+1 [14, Prop.
49]. In contrast, the upper bound of sep-rankΛn

in the exact case is linear in d2(n+1).
Hence, for fixed ε and sufficiently large dimension d this yields a better upper bound
in the approximate case.

(ii) Consider the circle of n elements, Ω = Θn, together with the cyclic group Cn.
Further let ρ ∈ M+

dn be Cn-invariant. Since |Cn| = n we obtain

rankε,1
(Θn,Cn)

(ρ) ≤
⌈

D2 ·
(

2µ2(ρ)

ε

)2
⌉
· n · dn

and
sep-rankε,1

(Θn,Cn)
(ρ) ≤ dD2 · (2/ε)2e · n · dn.

4

3.2 Nonnegative tensors

In the following, we use the correspondence between nonnegative tensors and di-
agonal psd matrices given in Equation (2.3) to show that the separation between
nn-rank(Ω,G), rank(Ω,G) and psd-rank(Ω,G) of nonnegative tensors vanishes in the
approximate case (Corollary 3.25).

As in Section 2.3, we consider the space Kn,d :=
⊗n

i=0 Cd equipped with the `p-
norm. In contrast to psd matrices, which are equipped with the Schatten p-norm, the
disappearance of separations for nonnegative tensors equipped with the `p-norm can
be proven for all 1 < p < ∞. Recall that Ω is a connected wsc and a G a free group
action.

We start with a preliminary lemma, which is a direct consequence of Corollary 2.14.

Lemma 3.24. Let M ∈ Kn,d and p ∈ [1, ∞). Then the following holds:

(i) rankε,`p

(Ω,G)
(M) ≤ nn-rankε,`p

(Ω,G)
(M)

(ii) psd-rankε,`p

(Ω,G)
(M) ≤ nn-rankε,`p

(Ω,G)
(M)

(iii) rankε,`p

(Ω,G)
(M) ≤ psd-rankε,`p

(Ω,G)
(M)2

(iv) psd-rankε,`p

(Ω,G)
(M) ≤ sqrt-rankε,`p

(Ω,G)
(M)
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Proof. We only show the first statement. The others are similar.

(i) For M′ ∈ Kn,d we denote the corresponding diagonal matrix σ′ ∈ Md.
By definition of σ and σ′ we have that ||M − M′||`p = ‖σ − σ′‖p. Hence, using
Corollary 2.14 it follows immediately

rankε,`p

(Ω,G)
(M) = min

{
rank(Ω,G)(M′) : ‖M−M′‖`p ≤ ε, M′ ∈ Kn,d

}
≤ min

{
nn-rank(Ω,G)(M′) : ‖M−M′‖`p ≤ ε, M′ ∈ Kn,d

}
= nn-rankε,`p

(Ω,G)
(M).

Note that it is not clear whether a similar result to Theorem 2.12 holds for the approxi-
mate ranks. This is because the ε-ball of diagonal matrices also contains non-diagonal
matrices with a possibly smaller rank than the diagonal matrices.

Corollary 3.25. Let ε > 0, n, K ∈N and 1 < p < ∞. We define the set

YK := {M ∈ Kn,d : d ∈N, M nonnegative and ‖M‖`p ≤ K}.

Then the following holds on YK:

(i) rankε,`p

(Ω,G)
6� psd-rankε,`p

(Ω,G)

(ii) psd-rankε,`p

(Ω,G)
6� nn-rankε,`p

(Ω,G)

Further, we define the set

Y√,K := {M ∈ Kn,d : d ∈N, M nonnegative and µ√,p(σ) ≤ K}

where σ denotes the corresponding diagonal matrix of M. Then the following holds on Y√,K:

(iii) psd-rankε,`p

(Ω,G)
6� sqrt-rankε,`p

(Ω,G)

(iv) rankε,`p

(Ω,G)
6� sqrt-rankε,`p

(Ω,G)

Note that (i) and (ii) imply that rankε,`p

(Ω,G)
6� nn-rankε,`p

(Ω,G)
on YK.

Proof. (i)-(ii) Let M ∈ YK. By Proposition 3.24, we have that rankε,`p

(Ω,G)
(M) and

psd-rankε,`p

(Ω,G)
(M) are upper bounded by nn-rankε,`p

(Ω,G)
(M). To obtain an upper bound

of nn-rankε,`p

(Ω,G)
(M) we restrict to p = 2, as the other cases are analogous. We

set M′ = M/‖M‖`2 and ε′ = ε/K. Then the corresponding diagonal matrix σ′

is a separable state. Note that any ε′-approximation of M′ is immediately an ε-
approximation of M. Using

P′2 :=

{
ρ[0] ⊗ · · · ⊗ ρ[n] : ρ[i] ∈ M+

d diagonal and ‖
n⊗

i=0

ρi‖2 ≤ 1

}
⊆ P2
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instead of P2 in the proof of Theorem 3.17, we obtain that

nn-rankε,`2
(Ω,G)

(M) ≤ dD2 · (2K/ε)2e · |G|

which is independent of the ambient dimension.

Since the Schatten p-norm on the space of diagonal matrices is equivalent to the
`p-norm on the corresponding tensor space, we can apply both Theorem 3.9 and
Theorem 3.17 for 1 < p < ∞ (see Remark 3.10 for details).

(iii)-(iv) Let M ∈ Y√,K. Again, by Proposition 3.24, psd-rankε,p
(Ω,G)

(M) is upper

bounded by sqrt-rankε,p
(Ω,G)

(M). Applying Corollary 3.19 to the corresponding diago-

nal matrix σ gives an upper bound for q-sqrt-rankε,p
(Ω,G)

(σ). This is again independent
of the ambient dimension by the choice of M.

Remark 3.26. Similarly to psd matrices (Corollary 3.22) we can upper bound the
approximate ranks for nonnegative tensors in the `1-norm. The correspondence
between diagonal psd matrices and nonnegative matrices yields for a nonnegative
and G-invariant M ∈ Kn,d the inequality

rankε,`1
(Ω,G)

(M) ≤ dn+1 · rankε,`2
(Ω,G)

(M).

This is the same d-dependence as the one of the exact Carathéodory Theorem [37].
Similar results appear for all other ranks of nonnegative tensors. 4

Example 3.27. We now give some concrete examples of decompositions whose sepa-
rations between ranks disappear in the approximate case. From now on we consider
the space K1,d = Cd ⊗Cd ∼=Md and Λ1-decompositions, in particular, decomposi-
tions of the form

M =
r

∑
α=1

v[0]α ⊗ v[1]α ,

where v[i]α ∈ Cd.

Recall that for M nonnegative, nn-rankΛ1(M) is the smallest integer r such that there
exists a decomposition of M with v[i]α ∈ Rd

+ for all α = 1, . . . , r (i.e. vectors with
nonnegative entries). Furthermore, psd-rankΛ1

(M) is the smallest integer r such that

there exist A[i]
j ∈ M+

r for j = 1, . . . , d and i = 0, 1 which generate a psd-factorization
(Definition 1.14)

Mkl =
r

∑
α0,α1=1

(
A[0]

k

)
α0,α1
·
(

A[1]
l

)
α0,α1

= tr
((

A[0]
k

)
·
(

A[1]
l

)T
)

.

Assume 1 < p ≤ 4/3, p = 2 or 4 ≤ p < ∞ and ε > 0 fixed. The separations are based
on examples mentioned in [19].

(i) Consider the normalized Euclidean distance matrix

Ud = Md/‖Md‖`p ∈ Md,

where Md is defined as

Md :=
(
(i− j)2

)d

i,j=1
.
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It was shown that sqrt-rankΛ1
(Md) = psd-rankΛ1

(Md) = 2 and

nn-rankΛ1(Md) ≥ log2(d).

Obviously the same statement is true for Ud. Hence, we obtain

sqrt-rankΛ1
� nn-rankΛ1 and psd-rankΛ1

� nn-rankΛ1 .

Since ‖Ud‖`p = 1, Corollary 3.25 shows that the separations for this example vanish,

i.e. nn-rankε,`p
Λ1

(Ud) can be upper bounded independently of d.
(ii) Let Sd be the slack matrix of a d-gon in the plane. We define the normalized slack

matrix as Vd := Sd/‖Sd‖`p . It was shown that rankΛ1(Sd) = 3 and psd-rankΛ1
(Sd)

diverges if d goes to infinity [21]. Obviously, the same holds for Vd. Hence

rankΛ1 � psd-rankΛ1
.

Since ‖Vd‖`p = 1, Corollary 3.25 shows that the separation for this example vanishes,

i.e. psd-rankε,`p
Λ1

(Vd) can be upper bounded independently of d. 4

Note that this discussion can also be extended to Λn-decompositions with n ≥ 1. One
application fulfilling the normalization condition is, for example, the interpretation
of a tensor M ∈ Kn,d as a probability mass function P(X0, . . . , Xn) over n + 1 discrete
random variables taking values in {1, . . . , d},

mi0,...,in := P(X0 = i0, . . . , Xn = in).

In this case M is nonnegative and bounded with ‖M‖`p ≤ ‖M‖`1 = 1. The nonnega-
tive Λn-decomposition corresponds to a hidden Markov model [20].

4 Computation of approximate decompositions

4.1 The gradient method for Schatten p- and `p-norms

The sequence in Theorem 3.8, which approximates a matrix in the given convex hull,
can be computed by a deterministic algorithm presented in [26] for uniformly smooth
Banach spaces. In the following, we give an explicit description of this algorithm for
Schatten p-classes (i.e. spaces equipped with the Schatten p-norm). Note first that
for 1 < p < ∞ the Schatten p-norm is everywhere differentiable except for 0. Let
X, Y ∈ Md \ {0} be two arbitrary matrices. Further, let

X = U · Σ ·V†

be a singular value decomposition, in particular, U, V ∈ Md,r are isometries where
r ≤ d and

Σ = diag(σ1, . . . , σr) ∈ Mr

is a diagonal matrix with positive entries. Further, we denote the ith column of U and
V by ui and vi, respectively. Then, the directional derivative of ‖ · ‖p at X in direction
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Y can be evaluated (see Ref. [36] for details) by

DY‖ · ‖p

∣∣∣∣
X
=

1

‖X‖p−1
p
·

r

∑
i=1

σ
p−1
i · u†

i ·Y · vi. (3.4)

Since X · vi = σi · ui, it further holds that DX‖ · ‖p

∣∣∣∣
X
= ‖X‖p. This property allows

us to formulate the algorithm to compute the sequence {Xi}∞
i=1 ⊆ S of Theorem 3.8.

Algorithm 3.28. The sequence {Xi}∞
i=1 ⊆ S which generates the approximation

Ak =
1
k ∑k

i=1 Xk of A ∈ conv(S) satisfying Theorem 3.8 can be constructed in the
following way:

(i) X1 is an arbitrary point in S.

(ii) For the constructed sequence {X1, . . . , Xk} ⊆ S , k ≥ 1 we choose Xk+1 ∈ S
such that for Y = Xk+1 − A the following holds

DY‖ · ‖p

∣∣∣∣
Ak−A

≤ 0. (3.5)

4

Note that as long as A ∈ conv(S), there always exists an Xk+1 ∈ S such that the
inequality is satisfied. Moreover, Algorithm 3.28 does not further constrain the choice
of Xk+1, and hence the upper bound given in Theorem 3.8 is satisfied for any sequence
constructed with this algorithm.

To apply this algorithm to the `p-norm, we only have to replace Equation (3.4) with

DY‖ · ‖`p

∣∣∣∣
X
=

1

‖X‖p−1
`p

·
d

∑
i,j=1

yij · xij · |xij|p−2 (3.6)

where xij and yij the entries of X and Y respectively at position (i, j).

4.2 Application to nonnegative decompositions

We now apply the above algorithm to a nonnegative Λ1-decomposition on the space
K1,d. We set

S =
{

ei ⊗ ej : i, j ∈ {1, . . . , d}
}

where ei the standard basis-vectors in Cd. Assume that A ∈ K1,d is nonnegative and
‖A‖`1 = 1. Obviously, we have that A ∈ conv(S) and the corresponding convex
combination is a valid nonnegative Λ1-decomposition of A.

Note that in step (ii) of the Algorithm 3.28, there is, in general, not a unique choice
that satisfies Equation (3.5). Hence, we distinguish between a standard and a greedy
method of choice.

Method 1. Define an order on S and choose the smallest element which satisfies
Equation (3.5).
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100 101 102 103

Iteration index k

10-3

10-2

10-1

100

‖A
k
−
A
‖ `

2

Random

k k−1/2

Method 1: d= 5

Method 2: d= 5

Method 1: d= 15

Method 2: d= 15

FIGURE 3.3: Application of Algorithm 3.28 to random matrices A at
two different dimensions d = 5 (green) and d = 15 (red). The entries
are independently uniformly distributed on [0, 1] with the constraint
that ‖A‖`1 = 1. The x-axis shows the iteration index and the y-axis
shows the error measured in the `2-norm. Gray shows the function
k 7→ k−1/2 as an orientation for the theoretical convergence rate (up to
a constant). Method 1 is plotted as a continuous line, and Method 2 as
dashed line. The sampling size for the random matrices is 20, and the

plots show the mean value and the standard deviation.

Method 2. Choose the element in S which attains the smallest value on the left hand
side of Equation (3.5).

In the following numerical examples we use for Method 1 the lexicographic ordering

(i, j) � (i′, j′) :⇐⇒ i < i′ or (i = i′ and j ≤ j′).

Figure 3.3 shows the application for random matrices with uniformly independently
distributed entries normalized to 1. Both methods show a k−1/2 convergence for small
k and a transition to a faster convergence rate depending on the method. As expected,
the greedy type Method 2 converges faster than Method 1. Concerning the choice
of the ordering in Method 1, there would be no difference to other orderings since
the entries are uniformly independently distributed. The numerical experiments also
indicate that the iteration index k where the transition of faster convergence appears
grows with increasing dimension d of the matrices.

Figure 3.4 shows the application of the algorithm to random rank-1 matrices. The
results are qualitatively similar to the case of random matrices, which have almost
surely full rank. This is due to the fact that random rank-1 matrices are almost surely
a linear combination of all d2 elements of S. Hence the algorithm cannot distinguish
between random matrices and random rank-1 matrices.

Since the algorithm cannot distinguish matrices with different ranks, Figure 3.5,
which shows the application to the Euclidean distance matrix Md normalized to 1,
also shows a similar convergence rate in comparison to Figure 3.3 and Figure 3.4.
Note that the fluctuations of the convergence are a natural consequence of the fact
that for every iteration step k, the prefactor of the linear combinations 1/k is fixed.
Since the graphs in Figure 3.3 and Figure 3.4 show an average convergence rate the
fluctuations do not appear therein.
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FIGURE 3.4: For the description of the graph we refer to the caption
of Figure 3.3. A = a · bT is a nonnegative random rank-1 matrix
with a, b ∈ [0, 1]d uniformly distributed and A normalized to 1, i.e.
‖A‖`1 = 1. The sampling size is 20, and the plots show the mean value

and the standard deviation.
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FIGURE 3.5: For the description of the different lines we refer to the
caption of Figure 3.3. A is the normalized Euclidean distance matrix

Md/‖Md‖`1 .
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Chapter 4

Conclusions and Outlook

In this thesis, we have introduced different notions of exact and approximate tensor
decompositions in the tensor product of matrix spaces and the tensor product of
spaces Cd, respectively. After introducing a particular type of tensor network decom-
positions, namely the matrix product density operator in Chapter 1, we have used
the framework of (Ω, G)-decompositions presented in [12] to define the different
notions of approximate (Ω, G)-ranks in Chapter 2. The weighted simplicial complex
Ω determines the arrangement of the indices in the sum of elementary tensor factors,
and the group action G contains the permutations of tensor product indices which
leave the elementary tensors in the (Ω, G)-decomposition invariant. The approximate
rank, introduced in Chapter 3, describes the minimal rank among all elements within
an ε-ball measured globally with the Schatten p-norm or the `p-norm.

In Chapter 1, we have shown that decompositions of diagonal positive semidefinite
matrices in the bipartite regime correspond to factorizations of nonnegative matrices
(Theorem 1.18). This theorem has been generalized to correspondences between
arbitrary (Ω, G)-decompositions of diagonal psd matrices and nonnegative tensors
in Chapter 2 (Theorem 2.12).

We have further studied in Chapter 1 an application of matrix factorization in the
context of correlation complexities (Theorem 1.19 and Theorem 1.22). With this
characterization, we have shown that there exists a separation between the random
correlation complexity and the quantum correlation complexity (Section 3.3).

In Chapter 2, we have given relations between all defined notions of ranks for psd
matrices (Theorem 2.13) and nonnegative tensors (Corollary 2.14). Further, we have
studied different separations between all notions of ranks (Theorem 2.16).

In Chapter 3, we have shown that a matrix contained in a convex hull can always be
approximated by a dimension-independent number of generators of the convex hull
for several Schatten p-norms (Theorem 3.8) and `p-norms (Remark 3.10). Using these
results we have proven the existence of upper bounds for the approximate (Ω, G)-
rank (Theorem 3.17), the approximate (Ω, G)-purification rank for psd matrices
(Corollary 3.19) and the approximate (Ω, G)-separable rank (Proposition 3.20) for
separable states, which are (up to a gauge function defined in Equation (3.3) and
the cardinality of the group action G) dimension independent. Using these upper
bounds we have shown that many separations between exact (Ω, G)-ranks disappear
in the approximate case for psd matrices (Corollary 3.21) and for nonnegative tensors
(Corollary 3.25). Finally, we have presented a procedure (Algorithm 3.28) to compute
such approximations, attaining the bounds of Theorem 3.8.
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The presented results might have several applications in various fields. As we have
seen in Chapter 1, there exists a separation between the random and the quantum
correlation complexity. Due to the disappearance of the separations in the approxi-
mate case also the separation between the correlation complexities would disappear.
Another field of application would be the field of tensor network decompositions
of mixed states in quantum many-body physics. Although the operator Schmidt
decomposition (Definition 1.1) is the most efficient decomposition it is not applicable
due to the lack of a local certificate of positivity. Contrary, the purification form
(Definition 2.8), which has a local certificate of positivity, can be arbitrarily more
costly than the former decomposition. That is, there is a separation between the
ranks of the decompositions. The application of the results studied and presented in
Chapter 3 might lead to an efficient approximate representation of every mixed state
in the local purification form. For this application it would be important to study
effective methods to compute upper bounds of our approximate ranks, in particular
the gauge function µ√,p for the purification rank. The presented results might also
have several implications in the field of tensor decompositions. This is due to the fact
that although for matrices, the low-rank approximations are well studied, for tensors
of higher order, a best low-rank approximation might not exist [5, 16].

An interesting open question is whether one can use the tensor product structure to
obtain better upper bounds, especially for the p = 1 case. So far, we did not make use
of this. Further, it would be interesting to do a similar study measuring the distance
of approximation locally. Reference [9] provides local notions of approximations
studied in the case of matrix product states.
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