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The Causal Compatibility Problem in Categorical Probability

by Andreas Klingler

Bayesian networks are probabilistic graphical models representing random variables via conditional
probability distributions. They are causal structures given by a directed acyclic graph. In this setting,
the d-separation criterion allows for deciding compatibility of a joint probability distribution with
a Bayesian network via analyzing conditional independence conditions when having access to all
variables in the model. However, checking d-separation on directed acyclic graphs is not particularly
intuitive; it includes several case distinctions on the particular shapes of paths between nodes in the
graph. Moreover, Bayesian networks traditionally include only certain causal structures, not covering
models with inputs or symmetries.

In this work, we study causal compatibility in the language of categorical probability using the recently
introduced framework of Markov categories. In particular, we introduce a string diagrammatic
framework of generalized causal models together with a categorical notion of d-separation, which
is simpler than the traditional one. Further, we present a proof of the d-separation criterion in this
abstract setting.

Our results apply to probabilities in measure theory (with standard Borel spaces), Gaussian random
variables, and finite probability distributions. This suggests that representing causal models with
string diagrams is a more natural approach than using directed acyclic graphs.
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1

Introduction

A central task among many modern sciences is studying cause-effect relationships between observed
quantities. In the last decades, graphical models like Bayesian networks have turned out to be a
successful approach to such phenomena. Bayesian networks decompose a probability distribution into
conditional probabilities according to a given causal structure represented by a directed acyclic graph.

Besides being a well-defined semantics for causal structures, Bayesian networks also allowed for
developing tools to analyze causal relationships in observational data via the d-separation criterion
when having access to all variables in the model. This criterion states that a probability distribution is
compatible with a given causal structure if and only if every d-separation in the directed acyclic graph
implies conditional independence in the probability distribution.

While conditional probabilities can be easily computed for discrete random variables using Bayesian
calculus, this does not naively extend to continuous or mixed random variables. This ambiguity stems
from the classical approach of probability theory based on Kolmogorov’s measure-theoretic axioms,
which constitute a low-level approach to probability theory. Operational concepts, like multipartite
probability distributions, conditioning, or Bayesian inversion, are then built up from these axioms.

Markov categories [Fri20] constitute a different approach to probability theory. In contrast to measure
theory, Markov categories are a top-down approach specifying how Markov kernels compose and
decompose using a set of basic algebraic axioms. This gives a new view on probability theory which is
completely agnostic about the usual measure theory behind it.

Several well-known results from classical measure-theoretic probability theory have been proven in
the language of Markov categories, including de Finetti’s theorem [FGP21], Kolmogorov’s zero-one
law [FR19], or the Blackwell-Sherman-Stein Theorem [Fri+20]. All of these proofs offer new insights
into these results and provide a clean, unified proof, and include discrete and measure-theoretic
probabilities as particular instances.

Beyond being a different approach to probability theory, category theory also offers string diagrams
as a structural framework to represent causal models. In the setting of Markov categories, a string
diagram reflects the information flow of variables present in a causal model. Every wire represents a
variable, and every box is a mechanism that samples a new variable depending on its input information.

While boxes in a string diagram are usually understood as concrete stochastic mechanisms (for ex-
ample finite stochastic maps or even measurable Markov kernels), these string diagrams can also be
understood as a blueprint of a causal structure.

In this work, we introduce new types of graphical models in the language of string diagrams in Markov
categories. In particular, we represent causal models as string diagrams instead of directed acyclic
graphs as done in the classical setting of Bayesian networks.



2 Introduction

This approach has several advantages. First, it is more general than the classical approach of Bayesian
networks. Second, it simplifies known methods like the d-separation criterion. While directed acyclic
graphs embed into the string diagrammatic framework, string diagrams can represent causal models
with inputs and models with additional symmetries. Although more general, we also show that string
diagrams lead to a simplified analysis of causal structures compared to classical Bayesian networks.
We present a novel notion of categorical d-separation, specializing to the classical d-separation when
considering Bayesian networks on directed acyclic graphs. This definition is much simpler than the
original one since it corresponds to topological disconnectedness in string diagrams.

We prove that d-separation also decides causal compatibility in the language of string diagrams. Since
we prove this result in the framework of Markov categories, this proof also includes continuous
and mixed probability distributions which are usually treated in the measure-theoretic framework.
Moreover, the proof in the setting of Markov categories highlights the necessary resources for the
d-separation criterion to be applicable.

Our study suggests that string diagrams are a more natural approach to causal models than the
traditional framework using directed acyclic graphs.

This work is structured as follows: In Chapter 1 we review the framework of Markov categories and
highlight how the measure-theoretic approach to probability embeds into the framework. In Chapter 2
we introduce the string diagrammatic formalism representing causal structures. Finally, we study in
Chapter 3 the causal compatibility problem in the language of Markov categories and string diagrams.
In particular, we introduce the notion of d-separation on string diagrams and prove the d-separation
criterion.
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Chapter 1

Categorical Probability

Probability theory is traditionally based on Kolmogorov’s measure theory axioms [KB18]. Despite its
technicality, it opened the door for a rich theory leading to theoretical results and applications in many
areas, including stochastic processes, theory of convergence and large deviations, stochastic partial
differential equations, and machine learning.

Categorical probability is a complementary approach to the foundations of probability theory. Instead
of building up probability by a low-level approach, the main goal of categorical probability is to
formalize the theory via some basic algebraic rules satisfied by systems of Markov kernels.

In a recent paper, Fritz [Fri20] introduced the concept of Markov categories as a concrete approach to
formalizing the behavior of Markov kernels building up on Cho and Jacobs [CJ19]. In this chapter,
we review this approach, introducing Markov categories. Further, we will show that certain concrete
classes of probability distributions like discrete probabilities, Gaussian probabilities, or arbitrary
measure-theoretic probabilities fit into this framework by constructing concrete realizations thereof.
Moreover, we will introduce essential notions of probability theory such as Bayesian disintegration or
(conditional) independence in the language of Markov categories. This sheds light on these notions
from an intuitive level and allows us to study probability theory completely from an abstract level.

We assume that the reader is familiar with the standard terminology of category theory, particularly
monoidal categories and their string diagrammatic calculus. For a detailed treatment, we refer to Mac
Lane’s classic book [Mac78], Leinster’s book [Lei14], as well as Perrone’s wonderful lecture notes
[Per19]. For a detailed exposition of monoidal categories and their applications, we refer to Fong’s
and Spivak’s book [FS18b].

This chapter is structured as follows. In Section 1.1, we introduce the notion ofMarkov and gs-monoidal
categories, the basic building block of categorical probability. In Section 1.2, we present an explicit
construction of such categories. By applying this construction, we give a categorical description of
different classes of probability spaces, including measurable Markov kernels on arbitrary measurable
spaces, standard Borel measures on measurable spaces, and Gaussian probability theory. In Section 1.3,
we review the axiom of conditioning. Finally, we introduce a categorical description of (conditional)
independence in Section 1.4. Both latter concepts are essential for the compatibility criteria in Chapter 3.

Parts of Section 1.4 are based on [FK22, Section 5.2].
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1.1 Markov categories

In the following, we define the notion of a Markov category and study concrete examples thereof.
Intuitively, a Markov category is an abstract axiomatization of probability distributions together with
modeling also the flow of information.

Definition 1.1 (gs-monoidal and Markov Category).

(i) A gs-monoidal category C is a symmetric monoidal category equipped with a comonoid structure for
every objectX ∈ C given by a counit delX : X → I and a comultiplication copyX : X → X ⊗X . In
the string diagrammatic notation these operations are depicted as

delX := copyX :=

and satisfy the commutative comonoid equations, diagrammatically given by

= = = =
(1.1)

and is as well compatible with the comonoid structure, i.e.

A⊗B

=

A B B

B B

A

A A

=

A⊗B A⊗B

A⊗B

(1.2)

as well as

I

=

I

I I

= (1.3)

(ii) A gs-monoidal category is called Markov category if del is in addition natural, i.e.

f = (1.4)

Note that the ”gs“ in the definition refers to the intended interpretation of the comonoid structure
since it stands for garbage (i.e. deletion) and sharing (i.e. copying). The additional condition for
Markov categories in Equation (1.4) axiomatizes the possibility of marginalizing random variables
in the context of probability theory. We refer to Example 1.3 and Section 1.2 for examples of Markov
categories.

Intuitively, the objects of a Markov category can be understood as abstract sample spaces. Morphisms
f : X → Y are understood as stochastic maps taking inputs x ∈ X and sampling in Y depending
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on x. Markov categories additionally include the two basic operations applicable to every sampling
space: copying and discarding information. The compatibility equations reflect the behavior of these
morphisms in the operational setting. In particular, the naturality of del imposes the condition that
the particular sampling process becomes irrelevant whenever the information becomes discarded
immediately afterwards.

The introduced notions have already been studied in different contexts and names. To the best
of our knowledge, gs-monoidal categories first appeared in Gadducci’s PhD thesis [Gad96] and
subsequently a paper joint with Corradini [CG99]. The main motivation in their works was the
graphical notations for formal languages. Later, Golubtsov [Gol99] independently introduced a similar
definition, already having applications to statistics in mind. Another work on string-diagrammatic
approaches to probability was done by Coecke and Spekkens [CS11].

The first appearance of gs-monoidal categories in the context of probability theory is in Fong’s Master
thesis [Fon13]. However, no explicit definition and construction thereof is given. Cho and Jacobs
[CJ19] introduce the notion of gs-monoidal categories in their present form, calling them CD (copy
and delete) categories. In the same work, the authors also introduce Markov categories dubbing them
affine CD categories.

The term Markov category is due to a paper by Fritz [Fri20], using the interpretation of morphisms as
generalized Markov kernels. In the following, we will give a motivation by studying some concrete
examples of Markov categories in Section 1.2.

Remark 1.2. Let us point mention some distinctive features of the introduced categories.

(i) Note that if Equation (1.4) is true, then the conditions in Equation (1.3) are automatically
satisfied.

(ii) By the associativity of the comonoid structure there is an unambiguous way of a multipartite
copy-morphism arising from multiple concatenations of copyX . In the following, we will write

. . .

as a shorthand for this morphism.

(iii) delI = idI implies that I is a terminal object since for every morphism f : X → I we have

f = idI ◦ f = delI ◦ f = delX (1.5)

where we have used Equation (1.4) in the last step.

(iv) Since delI = idI , the naturality of del is equivalent to I being a terminal object. This follows
immediately since for every morphism f : X → I we have

f = delI ◦ f = delX . △

In the following, we will present a representative example of a Markov category: the category of finite
Markov kernels on finite sets.
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Example 1.3. The Markov category consisting of finite sets as objects and finite Markov kernels as
morphisms is called FinStoch. More precisely, for finite sets X and Y , a morphism f : X → Y is
given by a function1

f : X × Y → R : (x, y) 7→ f(y|x) (1.6)

such that f(y|x) ≥ 0 and
∑

y∈Y f(y|x) = 1. Therefore, for a fixed value x ∈ X , y 7→ f(y|x) is again
a probability distribution. Composition of two morphisms f : X → Y , g : Y → Z is given by the
Chapman-Kolmogorov equation

(g ◦ f)(z|x) :=
∑
y∈Y

g(z|y) · f(y|x). (1.7)

The symmetric monoidal structure on FinStoch is given on the level of objects by the Cartesian
product. On the level of morphisms, we have the tensor product of Markov kernels (equivalently the
tensor product of stochastic matrices)

g ⊗ f : A×B → X × Y with (g ⊗ f)(xy|ab) := g(x|a) · f(y|b) (1.8)

for morphisms g : A→ X , f : B → Y .

The structure isomorphisms are inherited from the symmetric monoidal category FinSet (equipped
with the Cartesian product and a unit object I) by applying the inclusion functor

F : FinSet→ FinStoch : FX = X and Ff : (x, y) 7→

{
1 : if y = f(x)

0 : else
(1.9)

Moreover, it is immediate to show that FinSet is also a Markov category, where delX : X → I is the
constant map and copyX : X → X ×X : x 7→ (x, x) the copy map. Therefore, the induced maps via F

delX(|x) = 1 (1.10)

and

copyX(x1, x2|x) =

{
1 : if x1 = x2 = x

0 : else.
(1.11)

are a comonoid structure on FinStoch which satisfy the comonoid equations defining a Markov
category. △

In the following section, we will introduce more sophisticated examples of Markov kernels, acting
for example on continuous probability spaces or arbitrary measurable spaces. These constructions
leverage a general procedure of building up Markov categories by using Kleisli categories.

1An equivalent way is describing f as a stochastic matrix, i.e. a nonnegative matrix (fxy)x∈X,y∈Y such that
∑

y∈Y fxy = 1.
Composition of morphisms is then simply matrix multiplication.
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1.2 Construction of Markov categories: Kleisli categories

In this section, we review the standard approach of constructing Markov categories using Kleisli
categories. This is mainly a review of [FL22, Section 3]. For an introduction to Kleisli categories, we
refer to Perrone’s lecture notes [Per19, Section 5].

Definition 1.4. A monad (T, η, µ) on the category C is given by

(i) a functor T : C→ C,

(ii) a natural transformation η : idC =⇒ T , called unit,

(iii) a natural transformation µ : TT =⇒ T , called multiplication or composition.

which make the following three diagrams commute

T TT

T

ηT

id
µ

T TT

T

Tη

id
µ

TTT TT

TT T

Tµ

µT µ

µ

(1.12)

The left and the middle diagram are called left and right unitality, the right is called associativity.

In the following, we will introduce a notion of monads with additional structure, called symmetric
monoidal monads. These are monads respecting the symmetric monoidal structure of a category.

Definition 1.5. Let C be a symmetric monoidal category. A symmetric monoidal monad is a monad
T : C→ C with unit η and multiplication µ together with a morphism

∇X,Y : TX ⊗ TY → T (X ⊗ Y ) (1.13)

natural in both X and Y , which turns T into a lax monoidal functor.

Further, the natural transformations η, µ must be monoidal transformations, i.e. the diagrams

TTX ⊗ TTY T (TX ⊗ TY ) TT (X ⊗ Y )

TX ⊗ TY T (X ⊗ Y )

∇TX,TY

µX⊗µY

T∇X,Y

µX⊗Y

∇X,Y

(1.14)

and
X ⊗ Y

TX ⊗ TY T (X ⊗ Y )

ηX⊗ηY ηX⊗Y

∇X,Y

(1.15)

commute for all objects X,Y in C.



8 Chapter 1. Categorical Probability

Note that the term lax monoidal functor refers to the existence of a natural transformation ∇ relating
the objects TX ⊗ TY and T (X ⊗ Y ). The term monoidal transformation then refers to the equivalent
behavior of the components ηX⊗Y and ηX ⊗ ηY as well as µX⊗Y and µX ⊗ µY via the structure map∇.

In the following, we introduce the notion of a Kleisli category based on a monad (T, η, µ) on a category
C. While the objects are the same as inC, a morphism fromX to Y is given by amorphism k : X → TY

in C. These morphisms are called Kleisli morphisms. Kleisli composition (h ◦ k) : X → TZ between
Kleisli morphisms k : X → TY and h : Y → TZ arises from the monad structure as

X TY TTZ TZ.k Th µ (1.16)

Definition 1.6 (Kleisli category). Let (T, η, µ) be a monad on C. Then, the Kleisli category of C, denoted
Kl(T ), is defined in the following way:

(i) The objects are the objects of C.

(ii) The morphisms are the Kleisli morphisms of T .

(iii) The identity maps are given by the units ηX : X → TX for each object X .

(iv) The composition of morphisms is given by the Kleisli composition.

Kl(T ) is indeed a category, see for example [Per19, Definition 5.1.16].

For further use, we define the inclusion functor (also called Kleisli adjunction) RT : C → Kl(T ) by
RTX = X for every object X andRT f = ηY ◦ f for every morphism f : X → Y . Given a symmetric
monoidal monad T , it is possible to extendKl(T ) to a symmetric monoidal category. A proof of the
following statement can be found for example in [Sea12, Proposition 1.2.2].

Proposition 1.7. LetC be a symmetric monoidal category and (T, η, µ,∇) be a symmetric monoidal monad on
C. Then the Kleisli category Kl(T ) becomes symmetric monoidal by setting

(i) the tensor product of objects being the tensor product of C.

(ii) the tensor product of morphisms f : X → TA and g : Y → TB given by

X ⊗ Y TA⊗ TB T (A⊗B)
f⊗g ∇A,B (1.17)

The structure morphisms are given via applying the functorRT to the structure morphisms onC. Moreover, the
inclusion functorRT : C→ Kl(T ) is strict symmetric monoidal.

The last statement implies that if there is a distinguished comonoid structure on every object of C,
there is also a comonoid structure onKl(T ). In particular, the comonoids copyX and delX are given by

X X ⊗X T (X ⊗X)
copyX ηX⊗X (1.18)

and

X I T (I)
delX ηX (1.19)
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By functoriality it is immediate that the counit delX and comultiplication copyX on Kl(T ) satisfy
again Equation (1.1) and Equation (1.2). For Equation (1.4) we have to additionally assume I to be
terminal and that T (I) ∼= I , i.e. T is affine. Then, T (I) is also terminal and therefore Equation (1.4) is
automatically satisfied by Remark 1.2 (iv). This whole construction is summarized in the following
statement. (see [Fri20, Corollary 3.2]).

Corollary 1.8. LetC be a Markov category and T a symmetric monoidal affine monad. Then the Kleisli category
Kl(T ) is again a Markov category.

Example 1.9. Although we directly constructed the Markov category FinStoch by defining its mor-
phisms, one may also use Corollary 1.8 for construction. For this reason, we start with the category
Set and define the discrete distribution monad

D : Set→ Set

where for any object X in Set

DX :=
{
p : X → [0, 1] | supp(p) is finite

}
and for any morphism f : X → Y we have Df : DX → DY with

(Df)(p) := f⋆ p := y 7→
∑
x∈X

f(x)=y

p(x) (1.20)

for every p ∈ DX .

The functor D is indeed a symmetric monoidal affine monad where the monoidal structure on Set is
given by the Cartesian product and the unit η as well as multiplication µ are defined as

ηX : X → DX : x 7→

(
δx := y 7→

{
1 : x = y

0 : x ̸= y

)
(1.21)

and

µX : D2X → DX :M 7→

x 7→ ∑
p∈DX

p(x)M(p)

. (1.22)

We refer to [FP20, Section 6] for further details. △

We will now leverage Corollary 1.8 to construct different examples of Markov categories via the Giry
monad — a probability monad on measurable spaces — that leads to the construction of the Markov
categories Stoch and BorelStoch.

1.2.1 Measurable Markov kernels on measurable spaces

In this part, we construct the category Stoch of measurable Markov kernels between measurable
spaces. We will obtain Stoch as the Kleisli category of the Giry monad introduced in [Gir82]. Before
introducing the monad, we will give a brief overview of the main concepts of measure theory by
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introducing σ-algebras, measurable maps, and (probability) measures. We refer to [Bog07, Chapter 1]
for a more detailed of these concepts.

Definition 1.10. A collection ΣX of subsets of X is called σ-algebra if it satisfies

(i) ∅, X ∈ ΣX

(ii) ΣX is closed under complements, i.e. A ∈ ΣX =⇒ X \A ∈ ΣX

(iii) ΣX is closed under countable union, i.e. for {An}n∈N ⊆ ΣX , we have
⋃
n∈N

An ∈ ΣX

Furthermore, if ΣX is a σ-algebra, we call the tuple (X,ΣX) a measurable space.

Intuitively, the concept of σ-algebras capture those sets which are observable and hence the definition
of a measure as a function on a σ-algebra. Consider the example of rolling a die, i.e. X = {1, . . . , 6}.
While being able to measure arbitrary outcomes results in ΣX = P(X), being only able to distinguish
even or odd outcomes leads to

ΣX =
{
∅, {1, 3, 5}, {2, 4, 6}, X

}
.

While for finite and countable sets X one might always choose the power set P(X) as σ-algebra, in
many situations a distinctive σ-algebra construction is necessary. For example, a consistent construction
of the uniform probability measure on [0, 1] for arbitrary subsets of [0, 1] is not possible2; however
it attains a well-defined measure on the Borel σ-algebra (Equation (1.27)) [Bog07, Section 1.7]. We
continue by defining the notion of functions that are compatible with the structure of σ-algebras.

Definition 1.11. Let (X,ΣX) and (Y,ΣY ) be two measurable spaces. A function f : X → Y is called ΣX –
ΣY – measurable if

f−1(ΣY ) :=
{
f−1(B) : B ∈ ΣY

}
⊆ ΣX . (1.23)

If it is clear from context, we will omit the particular σ-algebras when talking about measurability. The
concrete definition of measurability allows for defining the category Meas as the category containing
measurable spaces as objects and measurable functions as morphisms. As we will see in the following
Meas is a symmetric monoidal category by defining a σ-algebra on the product spaceX × Y . For this
reason, let A ⊆ P (X,ΣX) and define

σ(A) :=
⋂
A⊆Σ

σ-algebra

Σ (1.24)

to be the smallest σ-algebra containing A. We define the product σ-algebra of two measurable spaces
(X,ΣX), (Y,ΣY ) by setting

ΣX ⊗ ΣY := σ
({
B1 ×B2 : B1 ∈ ΣX , B2 ∈ ΣY

})
.

2One such example of a non-measurable subset is the so-called Vitali set [Bog07, Example 1.7.7].
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Note that ΣX ⊗ ΣY is in particular the smallest σ-algebra such that the projection maps

πX : X × Y → X and πY : X × Y → Y (1.25)

are measurable. This definition of product makesMeas into a Cartesian category.

We now turn to the notion of (probability) measures on arbitrary measurable spaces.

Definition 1.12. Let (X,ΣX) a measurable space. A measure on X is a function µ : ΣX → [0,∞] such that
µ(∅) = 0 and µ is σ-additive, i.e. for every collection {An}n∈N ⊆ ΣX of disjoint measurable sets we have

µ

( ⊔
n∈N

An

)
=
∑
n∈N

µ(An)

If, in addition, µ(X) = 1, we call µ a probability measure.

We are now ready to construct the category of measurable Markov kernels Stoch. We first introduce
the Giry monad P and then apply Corollary 1.8 to define Stoch asKl(P).

We define the functor P : Meas→Meas by first specifying its action on objects. Every measurable
space (X,ΣX) is mapped to the set P (X,ΣX) containing all probability measures on (X,ΣX).

To make this functor meaningful, we have to equip the space of probability distributions with a
reasonable notion of σ-algebra. Therefore, we define ΣPX to be the coarsest σ-algebra on P (X,ΣX)
which makes the evaluation map

evalA : P (X,ΣX)→ [0, 1] : µ 7→ µ(A)

measurable for every A ∈ ΣX . We refer to Appendix A for a detailed study and a proof of the
well-definedness of this σ-algebra.

Wewill use in the following the short-hand notationPX forP (X,ΣX) andP2X for the set of probability
distributions on the measurable space (P (X,ΣX),ΣPX).

Moreover, we map every morphism inMeas (i.e. every measurable map f : X → Y ) to the pushfor-
ward f⋆ , defined as

Pf := f⋆ : PX → PY : µ 7→ µ ◦ f−1.

P can be extended to a monad by defining a unit η : X → P (X,ΣX) : x 7→ δx mapping each point x to
the Dirac distribution δx and a multiplication

µ : P2X → PX :M 7→
∫

P (X,ΣX)

pM(dp)

whereM is a probability measure on the space of probability measures P (X,ΣX). Note that this
construction indeed looks very similar to the construction of the discrete probability monad. To
define for example the multiplication µ, we just replaced the discrete distribution over probability
distributions (calledM) by a probability measure on the set of probability measures. Further, we
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replaced the sum by an integral (see Equation (1.22)). For the proof that P is indeed a monad and the
construction of the corresponding Kleisli category we refer to Appendix A.

The monad (P, µ, η) is further monoidal affine by defining the morphism

∇X,Y : PX ⊗ PY → P
(
X × Y

)
: (µ, ν) 7→ µ⊗ ν.

which satisfies Equations (1.14) and (1.15). This allows for constructing Stoch := Kl(P ) as a sym-
metric monoidal category.

We will now analyze the morphisms in Stoch and their interpretation. A morphism f : (X,ΣX) 7→
P (Y,ΣY ) in Stoch is given by a map

f : ΣY ×X → [0, 1] : (A, x) 7→ f(A|x)

satisfying that

(i) f(−|x) : ΣY → [0, 1] is a probability measure on (Y,ΣY )

(ii) f(S|−) : X → [0, 1] is measurable for every S ∈ ΣY

In other words, f is a Markov kernel with source (X,ΣX) and target (Y,ΣY ). Further, the Kleisli
composition between f : ΣY × X → [0, 1] and g : ΣZ × Y → [0, 1] leads to (a version of) the
Chapman–Kolmogorov formula

g ◦ f : ΣZ ×X → [0, 1] : (A, x) 7→ (g ◦ f)(A|x) :=
∫
Y

g(A|y)f(dy|x). (1.26)

Again, the Chapman-Kolmogorov formula in the measurable setting differs from the discrete setting
only by replacing the sum with an integral and replacing the discrete probability distributions with
probability measures.

For a full description of Stoch as a Markov category, it remains to define the copy and deletion maps.
The copy map is defined via

copy(X,ΣX) : (ΣX ⊗ ΣX)×X 7→ [0, 1] copy(X,ΣX)(A×B, x) =

{
1 if x ∈ A ∩B
0 otherwise

where A×B ∈ ΣX ⊗ΣX is a generating rectangle in the product σ-algebra. The deletion map is given
by del(X,ΣX) := 1. This is sensible since for any morphism f : X → Y ⊗ Z(

del(Y,ΣY ) ◦ f
)
(A|x) =

∫
Y

f(A,dy|x),

where A ∈ ΣZ . But this is precisely the marginal Markov kernel of Z given X .

1.2.2 Standard Borel spaces and measurable Markov kernels

In the following, we introduce the category BorelStoch as yet another Markov category smaller than
Stoch. This category has some desirable properties Stoch is not having while being still quite general.
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For a topological space (X, T ) we define the Borel σ-algebra to be the smallest σ-algebra containing all
open sets of the topology, more precisely

B(X) := σ(T ). (1.27)

To constructBorelStoch, we restrict to a particular subclass of topological spaces, namely Polish spaces.
A topological space is called Polish, if it is a complete separable metric space, i.e. there exists a metric
generating the topology, every Cauchy sequence has a limiting point with respect to this metric, and it
a countable, dense subset.

Definition 1.13. A Borel measurable space (X,B(X)) is called standard Borel, if X is a Polish space.

This definition gives rise to a new category of measurable spaces, the category BorelMeas:

(i) Objects are standard Borel spaces.

(ii) Morphisms f : X → Y are measurable maps from X to Y .

Standard Borel spaces are closed under products, i.e. if (X,B(X)) and (Y,B(Y )) are standard Borel,
then so is X × Y .3 In particular,

B(X × Y ) := σ
({
B1 ×B2 : B1 ∈ B(X), B2 ∈ B(Y )

})
. (1.28)

This implies that BorelMeas is a symmetric monoidal full subcategory of Meas.4 Moreover, the Giry
monad P restricts to standard Borel spaces, i.e. P : BorelMeas→ BorelMeas. This follows from the
fact that for every Polish space X , the space P (X,B(X)) is again Polish. We refer to [Par67, Theorem
6.5] for details.

These two properties, namely BorelMeas being a Markov category (with the same copy and deletion
map as inMeas), and P restricting to BorelMeaswe can define the Markov category BorelStoch

via Corollary 1.8.

In particular, BorelStoch is a full subcategory of Stoch since the objects restrict to standard Borel
spaces while the morphisms between standard Borel spaces agree in both categories.

1.2.3 Gaussian probability theory

As a last example, we introduce the Markov categoryGauss. This category captures all multivariate
Gaussian probability distributions. Morphisms are linear transformations with additional Gaussian
noise. In contrast to Stoch and BorelStoch, we construct Gauss not as the Kleisli category of a
monad. We will directly build upGauss specifying its objects and morphisms.5

Consider a Gaussian random variableX ∈ Rm. Since linear transformations of Gaussians and addition
of independent Gaussians remain Gaussian,

Y :=MX + ξ

3For metrics d1 on X and d2 on Y , we have for example the metric d := max{d1, d2} on X × Y . If X and Y are complete,
then so isX × Y .

4i.e. every object inBorelMeas is also inMeas and HomBorelMeas(X,Y ) = HomMeas(X,Y ).
5In fact it is an open question whether Gauss can be obtained as a Kleisli category of a monad [Fri20, Section 6].
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is a again Gaussian whereM is a n×mmatrix and ξ a Gaussian noise independent ofX . This motivates
the definition of a conditional distribution of Y in terms of X ∈ Rn via a triple (M,a,A)whereM is
the indicated linear transformation and ξ is uniquely specified via its expectation value E[ξ] = a and
covariance matrixVar[ξ] = A defined as

Aij = E[ξiξj ]−E[ξi] ·E[ξj ]

For this reason, we define the monoidal categoryGauss in the following way:

(i) Objects are given by the monoid (N,+).

(ii) Morphisms n→ m are specified by tuples (M,a,A)whereM ∈ Rm×n, a ∈ Rm and A ∈ Rm×m

is positive semidefinite.

It remains to define a formal composition rule. Therefore, let (N, b,B) : m→ k be a second morphism
representing the conditional distribution Z = NY + η. Representing Z in terms of X , we obtain

Z = NMX +Nξ + η.

The composed linear transformation is specified byN ·M and for the Gaussian noiseNξ+ η we obtain

E[Nξ + η] = NE[ξ] +E[η] = Na+ b

and
Var[Nξ + η] = N tVar[ξ]N +Var[η] = N tAN +B

where we have used in the first equation that ξ and η are independent.

This motivates to define the composition rule as

(N, b,B) ◦ (M,a,A) := (NM,Na+ b,NAN t +B).

The composition ◦ is associative and the identity morphism is given by (idn, 0, 0).

We now show that Gauss is a symmetric monoidal category. While the monoidal product on objects
is given by +, we define the tensor product morphism acting on two separate variables by

(M,a,A)⊗ (N, b,B) := (M ⊕N, a⊕ b, A⊕B).

This is a well-defined composition of Gaussian distributions since E[(ξ, η)] = (E[ξ],E[η]) = a⊕ b and

Var[(ξ, η)] =

(
Var[ξ] 0

0 Var[η]

)
= A⊕B

since ξ and η are independent.

Finally, defining deln : n→ 0 by its only morphism (0, 0, 0) and

copyn :=

((
idn

idn

)
, 0, 0

)

makes Gaus into a Markov category, where copyn maps a vector X ∈ Rn to (X,X) ∈ R2n.
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1.3 Existence of conditional Markov kernels

One essential task in studying causal compatibility is the computation of conditional distributions.
More precisely, given a stochastic map outputting two random variables (i.e. sampling for example in
a space X × Y ), we want to find procedures first sampling the random variable in X and then in Y .

For this reason, we introduce this behavior as an additional condition for Markov categories, calling
it the existence of conditionals. In the following, we briefly review the definition following [Fri20,
Section 11].

Definition 1.14. Let C be a Markov category. We say that C has conditionals if for every morphism f : A→
X ⊗ Y , there is a morphism f|X such that

f

X Y

A

= f

f|X

X Y

A

In a categorical setting, this has been studied first by Cho and Jacobs [CJ19] in the special case of
probability distributions, where the authors call it admitting disintegration. Subsequently, Fritz [Fri20]
generalized the notion to arbitrary Markov kernels.

Examples of categories having conditionals are FinStoch,Gauss as well as BorelStoch. However,
Stoch does not have conditionals. For proofs of these statements, we refer to [Fri20, Examples 11.6–
11.8] and references therein. Therefore, the causal compatibility criteria will be only applicable to the
former three Markov categories.

1.4 Independence and Conditional Independence

One further central notion in the d-separation criterion for causal compatibility is conditional indepen-
dence. In the following, we will introduce two notions of conditional independence in the setting of
Markov categories. Conditional independence in a string diagrammatic language was first defined
and studied by Cho and Jacobs [CJ19] for mere probability distributions and later extended to arbi-
trary morphisms by Fritz [Fri20]. In the following, we will briefly review the notion for probability
distributions following [Fri20, Section 12].

Definition 1.15. A morphism ψ : I → X ⊗ Z ⊗ Y displays the conditional independence X ⊥ Y | Z if

f

X Z Y

=

X Z Y

(1.29)
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According to this definition, a finite probability distribution P : X×Y ×Z → [0, 1] inFinStoch shows
the conditional independence X ⊥ Y | Z if

P (x, y, z) = P (x|z) · P (y|z) · P (z).

This coincides with the classical notion of conditional independence.

The string-diagrammatic definition satisfies the well-known semigraphoid properties [Stu06, Section
2.2.2], as shown in [CJ19, Proposition 6.10] for Markov categories with conditionals and later extended
to arbitrary Markov categories [Fri20, Lemma 12.5].

With this in mind, we now introduce a novel notion of conditional independence for morphisms with
nontrivial inputs. This notion is the key ingredient of the d-separation criterion presented in Chapter 3,
and it is the categorical generalization of the transitional conditional independence introduced recently by
Forré [For21, Definition 3.1].

Definition 1.16. A morphism f : A→ X ⊗ Y ⊗Z inC displays the conditional independenceX ⊥ Y | Z
if there exists a factorization of the form

X Z Y

f

A

=

YZX

A

Remark 1.17.

(i) Note that the above definition of conditional independence is not symmetric, i.e.X ⊥ Y | Z does
not necessarily imply Y ⊥ X | Z.

Consider for example in FinStoch the spaces X = Y = Z = A = {0, 1} and the conditional
distribution

P (x, y, z|a) = P (x, z) · P (y|a) x ∈ X, y ∈ Y, z ∈ Z, a ∈ A

where P (x, z) = 1
2δx,z and P (y|a) = δy,a. This distribution displays X ⊥ Y | Z since

P (x, y, z|a) = P (x|z) · P (y, z|a)

with P (x|z) = δx,z and P (y, z|a) = 1
2δy,a. It does not display Y ⊥ X | Z since assuming

P (x, y, z|a) = P (y|z) · P (x, z|a)

would imply that for x = z the 2× 2 identity matrix

I2 = (δy,a)y,a∈{0,1} =
(
2 · P (x, y, z|a)

)
y,a∈{0,1}

=
(
2 · P (y|z) · P (x, z|a)

)
y,a∈{0,1}

i.e. I2 has rank 1 which is a contradiction.
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(ii) If C has conditionals then X ⊥ Y | Z rewrites to

X Z Y

f

A

=

YZX

A

=

X Z Y

A

which highlights again the asymmetry. Moreover, if A is trivial, then the conditional indepen-
dence coincides with Definition 1.15. △

Due to the asymmetry, the output Y might contain information about the input Awhich cannot be
retrieved just from Z. On the other hand, the output inX is generated using only the information from
the output in Z. The local Markov property that we will use in Definition 3.12 explicitly highlights
this asymmetry: the output of a box (corresponding to X) is independent of its non-descendants (Y )
given its inputs (Z). Every global input is non-descendant to any box; however, not every global input
wire is directly an input of the box itself.
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Chapter 2

A categorical framework for causal models

Causal models constitute a framework to study dependencies between different observables. The
most prominent example is Bayesian networks, whose causality structures are represented by directed
acyclic graphs (DAGs).

In this section, we introduce a different approach in the language of Markov categories. This new
framework builds up on the idea of Bayesian networks, however, it is represented by string diagrams
instead of DAGs. As we will see throughout this thesis, this brings two main advantages compared to
the classical approach with DAGs:

▷ The string diagrammatic formalism is more general than the DAG approach, i.e. it contains a
broader range of causal models compared to the DAG-framework.

▷ The notion of d-separation on DAGs, which is used to decide causal compatibility, simplifies in
the setting of string diagrams to a more intuitive formulation.

Moreover, the categorical formulation allows for studying causal compatibility independently of
the concrete class of probabilities since all results are proven on the level of Markov categories. In
particular, all results of deciding causal compatibility apply to morphisms in FinStoch,Gauss, and
BorelStoch. Moreover, this approach avoids using any measure theory since the statements are
proven diagrammatically.

This chapter is structured as follows: In Section 2.1 we introduce the idea of causal models as string
diagrams andmotivate its differences from the classical framework using DAGs. The rest of this chapter
is then devoted to constructing the appropriate category capturing causal models. We introduce the
category of hypergraphs in Section 2.2, which is the basic building block to defining gs-monoidal string
diagrams in Section 2.3. In Section 2.4, we then review the construction of free Markov categories and
finally show in Section 2.5 their relation to causal models.

Parts of Section 2.1 are based on [FK22, Section 1], and the rest of this chapter is based on [FK22,
Section 4].

2.1 From directed acyclic graphs to string diagrams

The traditional framework of Bayesian networks is represented by directed acyclic graphs (DAGs).
These graphs encode the underlying causal structure. Each node v ∈ V of a DAG G corresponds to a
variable Xv, and each directed arrow w → v corresponds to a direct possible causal dependence of the
variable Xv on Xw.
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A joint probability distribution is compatible with a given causal structure G if P factorizes into

P
(
X1, . . . , Xn

)
=

n∏
i=1

P
(
Xi | Pa(Xi)

)
where Pa(Xi) = {Xj : G contains the arrow j → i} is set of parents of Xi relative to the graph G.

In this section, we introduce a different way of parametrizing causal models, based on string diagrams.
This idea goes back to a work of Fong [Fon13] and has appeared in the meantime in several other
works [Ris20; RW21; Gao22; JKZ19].

As already presented in the last chapters, string diagrams arise as a natural tool in symmetric monoidal
categories and, therefore, also in the context of Markov categories. In this chapter, we will leverage
this representation and introduce a Markov category whose morphisms will be the basic framework to
address causal models in the language of categorical probability.

Rather than Markov kernels, the morphisms in a free Markov category are the string diagrams them-
selves, i.e. all ”networks“ that can be built by plugging together a set of boxes. In this way, string
diagrams constitute generalized causal models. In particular, we will see that string diagrams can
represent arbitrary DAG causal models. Consider for example the following DAG:

Z

X Y

W

(2.1)

A discrete probability distribution P is compatible with this structure if

P (x, y, z, w) = P (w | x, y) · P (x | z) · P (y | z) · P (z).

As a string diagram, this causal structure looks like this:

X YWZ

(2.2)
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Each loose wire1 represents a random variable where the name of the wire indicates the name of the
variable. Further, each variable has a corresponding type, a placeholder for the concrete probability
space in a concrete Markov kernel. Unless necessary, we will not explicitly mention the type of each
variable.

In our setting, every wire is connected to an ”output“, representing a variable that is ”observed“
rather than marginalized over. Note that every variable then becomes an output in exactly one way.
Throughout this thesis, we call such diagrams pure blooms (see Definition 2.7).

Every box in a pure bloom string diagram corresponds to one vertex in the DAG with inputs coming
from all of its parents2. For example, X and Y causally influenceW , so the box outputtingW in the
string diagram has two inputs corresponding to X and Y . Moreover, the copy-map allows sharing of
the same random variable multiple times. For example, Z causally influences X and Y , therefore the
corresponding copy map in the string diagram copies Z three times, one for X , one for Y , and one as
an output.

The following table elucidates upon the relation between nodes in a DAG, boxes in the string diagram,
and the corresponding conditional probability distribution. In particular, it shows that DAGs are only
capable of representing particular local processes in a causal model.

DAG string diagram conditional distribution

on
e
ou

tp
ut

X P (X|ABC)

id
en

t.
ou

tp
ut
s

X P (XX|ABC)

di
ff.

ou
tp
ut
s

✗ P (XY |ABC)

Using string diagrams as generalized causal models allow us to go beyond the DAG approach in
several directions:

▷ String diagrams in Markov categories describe Markov kernels instead of just probability dis-
tributions. Therefore, the string diagram language allows for modeling causal structures with

1Note that we use the term ”wire“ as referring to an entire connected piece of circuitry, i.e. traversing a black dot in the
diagram does not leave the wire.

2This correspondence was already observed in Fong’s master thesis [Fon13]; however no formal construction of free
Markov categories was given.
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inputs, such as

gf

This describes a causal structure in which the input variable at the bottom does not have any
particular distribution itself.

▷ As indicated in the table, boxes in the string diagram can have more than a single output wire.
Therefore, we have a framework to represent causal structures like

YX Z1 Z2

which are not native to the DAG framework (see Example 3.16(i) for a detailed discussion of this
structure).

▷ String diagrams allow for the use of identical boxes multiple times. In particular, we can represent
symmetric causal structures, for example,

p

f f ff

X1 X2 Z X4X3

represents a causal structure in which one random variable with distribution p causally influences
four others with the additional constraint that the causal mechanism must be the same for all
four. Further, in this situation the types of the variables X1, . . . , X4 must be the same.

2.1.1 Causal compatibility for Markov categories

A distribution is compatible with a causal model if it can be written as a composition in precisely
the way specified by the corresponding string diagram. In other words, every typeW in the string
diagram is mapped to a concrete probability space FW and every box f to a concrete Markov kernel
Ff .

In the category theoretic language this is captured in the following way: A morphism p in a concrete
Markov category is compatible with a causal structure φ, if there exists a functor F such that p = Fφ.
Intuitively, this functor acts as follows:
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FreeMarkov Stoch, BorelStoch,
Gauss, etc.

f g

YX

Z

Ff Fg

FBFA

FC

FC

!
= p

Z ′

X ′ Z ′ Y ′

F

where p is the given morphism in a concrete Markov category and FreeMarkov the free Markov
category whose morphisms capture the causal models. Further, X has type A, Y has type B, and Z
has type C.

The notion of free Markov categories are the tailored notion for all of these purposes. These categories
contain precisely all morphisms which arise from a generating set of morphisms. A morphism in
this category is then understood as a causal model. We divide the construction into three main parts:
First, we will introduce a categorical formulation of hypergraphs as a basic structural tool. Placing
appropriate restrictions we leverage them to give a combinatorial description of morphisms, including
a gs-monoidal structure. This gives rise to a universal construction of a free gs-monoidal category.
Finally, we review the universal construction of free Markov categories introduced in [FL22].

This chapter mainly reviews the construction of free gs-monoidal categories and freeMarkov categories
presented in [FL22]. It introduces the necessary tools to study the causal compatibility problem in
Chapter 3. A similar construction was given independently in [MZ22].

2.2 The category of hypergraphs

In the following, we introduce the category of hypergraphsHyp following [Bon+16]. This category
captures all (directed) hypergraphs as objects and an appropriate notion of morphisms between
hypergraphs.

For this purpose, we start by defining a particular type of index category. Let I be the category defined
in the following way:

(i) The set of objects is given by {(k, ℓ) | k, ℓ ∈ N} ∪ {⋆}

(ii) Besides the identity morphisms, for every (k, ℓ) there are k + ℓ different morphisms

in1, . . . , ink, out1, . . . , outℓ : (k, ℓ)→ ⋆.

Note that it is not necessary to specify any composition rule in I since no compositions exists except
the trivial ones.
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Definition 2.1 (Hypergraph category). A functor G : I → Set is called a hypergraph. We define the
functor category3

Hyp := SetI

Intuitively, the functor G characterizes our common interpretation of (directed) hypergraphs in the
following way:

(i) W (G) := G(⋆) is the vertex set (or in string diagrammatic language the set of wires)

(ii) Bk,ℓ(G) := G((k, ℓ)) is the set of edges with k inputs and ℓ outputs (or string diagrammatically
the set of boxes)

(iii) G(ini) specifies the wire connected to the ith input of every box.

(iv) G(outj) specifies the vertex connected to the jth output of every box.

Note that the set of boxes and the set of wires can be chosen to be infinite; however, the number of
inputs and outputs are always finite. An example of a pictorial representation of a hypergraph is
shown in Figure 2.1.

f
g

h

A

B

C

E

ℓ

D
m

Fig. 2.1. Pictorial representation of a hypergraph with vertex set {A,B,C,D,E} and edge set
{f, g, h,m, n}. The vertices are represented by wires and the edges are represented by boxes whose
input vertices are wires from the bottom and output vertices are wires from the top. For example,
the edge f has one input connected to vertexB and two outputs both connected to vertexA. Vertex

E is not connected to any edge.

For a box b ∈ Bk,ℓ(G) and a wire A ∈W (G), we define the cardinalities

in(b, A) :=
∣∣{j ∈ {1, . . . , ℓ} : inj(b) = A

}∣∣,
out(b, A) :=

∣∣{i ∈ {1, . . . , k} : outi(b) = A
}∣∣

counting the number of incoming or outgoing wires of type A in the box b. Further, we also denote the
sets of inputs and outputs as

in(b) :=
{
ini(b) : i ∈ {1, . . . , ℓ}

}
,

out(b) :=
{
outi(b) : i ∈ {1, . . . , k}

}
,

where repeated wires are counted only once.

3A functor categoryDC is defined as follows: The objects are given by all functorsC → D. Morphisms are the natural
transformations between functors α : F ⇒ G. Composition is given by the vertical composition of natural transformations, i.e.
for α : F ⇒ G and β : G ⇒ H , we have β ◦ α : F ⇒ H with (β ◦ α)X := βX ◦ αX (see [Lei14, Construction 1.3.6] or [Per19,
Section 1.4.5] for details).
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Let us next analyze the morphisms in the category Hyp. A morphism α : F → G is precisely a
natural transformation α : F ⇒ G sinceHyp is a functor category. Natural transformations are fully
determined by their components; in this situation,

α⋆ :W (F )→W (G) and α(k,l) : B(k,ℓ)(F )→ B(k,ℓ)(G) for all k, ℓ ∈ N

satisfying the naturality conditions, i.e. the following diagrams commute:

Bk,ℓ(F ) W (F )

Bk,ℓ(G) W (G)

αk,ℓ

ini

αk,ℓ

ini

Bk,ℓ(F ) W (F )

Bk,ℓ(G) W (G).

αk,ℓ

outj

αk,ℓ

outj

Put differently, every morphism inHyp is a structure-preserving map between hypergraphs. More
precisely, if box f is incident to wire A in its ith input in the hypergraph F , then the same applies to
their images with respect to α in the hypergraph G.

As already pointed out,Hypmight contain an infinite set of boxes and wires. For the rest of this thesis,
we will mainly restrict to finite hypergraphs, i.e. functors GwhereW (G) and

B(G) :=
∐
k,ℓ∈N

Bk,ℓ(G).

are finite sets.4 We will denote the corresponding category as FinHyp.

2.3 gs-monoidal string diagrams

The pictorial representation of hypergraphs already indicates their potential use for modeling causal
structures in a categorical framework. For the rest of this chapter, we use hypergraphs to construct free
Markov categories generated by a fixed hypergraph Σ. Free Markov categories are Markov categories
whose morphisms are string diagrams built up from the boxes in Σ.

However, several apparent problems prohibit us from using hypergraphs directly as a framework
representing string diagrams:

▷ Hypergraphs can contain loops, i.e. an output wire of a box might be indirectly connected to one
of its inputs and therefore feed back.

▷ While splitting a wire into two represents copying of values and makes sense in any Markov
category, merging ofwires as in Figure 2.1 does notmake sense. In otherwords, aMarkov category
is, in general, no hypergraph category (according to [FS18a]) due to its missing Frobenius
generators.

▷ Ahypergraph has no intrinsic input and output. This additional information has to be additionally
specified via a cospan over hypergraphs.

We resolve these issues by restricting to acyclic and left monogamous hypergraphs and by representing
gs-monoidal string diagrams by cospans thereof (see Definition 2.2).

4Note that this is a stronger condition compared to considering the category FinSetI. In the latter category, the set B(G)
might still be infinite since the restriction of being a finite set only applies to all Bk,ℓ(G).
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f1

A1 A2

B1

m

1 2

f1 f2

A1 A3

A2

B1

m

1 2 3

g1

h1

A1

C1

ℓ1

D1

B1

1

1

Fig. 2.2. Examples of hypergraphs in FinHyp/Σ where Σ is the hypergraph from Figure 2.1. The
hypergraph morphisms are given by mapping the vertices Ai to A in both examples as well as
mapping the two separate boxes f two the only morphism f in Σ. The second hypergraph is not

left-monogamous since A2 arises from two outputs, the third hypergraph is not acyclic.

We will start by introducing the notion of slice categories. Given a category C and an object X in C,
the slice category C/X is defined as follows:

(i) Objects are given by morphisms φ : A→ X

(ii) Morphisms from φ : A → X to ψ : B → X are given by morphisms m : A → B such that the
diagram

A B

X

φ

m

ψ

commutes.

Given a finite hypergraphΣ, the slice categoryFinHyp/Σ is given by hypergraphsGwith a morphism
φ : G → Σ. In other words, any G can be understood as a hypergraph that is labeled by boxes and
wires in Σ. We refer to Figure 2.2 for examples. These already show one feature explicitly, namely the
possibility of having identical morphisms in one string diagram multiple times.

We are now ready to define the main ingredient for free gs-monoidal and free Markov categories,
namely gs-monoidal string diagrams.

Definition 2.2. Given a hypergraph Σ. A gs-monoidal string diagram for Σ is a cospan in FinHyp/Σ of
the form

G

n m

p q (2.3)

satisfying that

(i) G is acyclic, i.e. there is no family of wires (A0, . . . , An−1) and boxes (f0, . . . , fn−1) such that

in(fi, Ai) ≥ 1 and out(fi, Ai+1) ≥ 1

where addition is taken modulo n.
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(ii) G is left monogamous, i.e. for every wireW we have

|p−1(W )|+
∑

f∈E(G)

out(f,W ) ≤ 1 (2.4)

In the above definition, we have made use of the discrete hypergraph n which is defined viaW (n) =

{1, . . . , n} and B(n) = ∅. Hence, the morphism p : n→ G in the cospan assigns different wires in G
to 1, . . . , n. These labels specify the global input wires in the hypergraph. Similarly, q : m→ Gmaps
labels to them different output wires in the hypergraph.

Pictorially, an acyclic hypergraph does not contain a family of wires which form a loop. Further, left
monogamy requires that every wire in the hypergraph arises as either a global input or as an output of
a box in precisely one way, ensuring that no ”merging“ of wires occurs. See Figure 2.2 for an illustration
of these properties. We define the hypergraph morphism type : G→ Σ by mapping the wires Ai to A
in both examples and mapping the two distinct boxes fi to the only morphism f in Σ, etc. The first
and second hypergraphs are acyclic, while the third one is not. The first and third hypergraphs are left
monogamous, while the second one is not since A2 is an output of two boxes. Finally, we have n = 0 in
the first two cases so that the left cospan leg p is trivial, while the right leg q maps each number i to
the ith overall output wire as counted from left to right.

The notion of gs-monoidal string diagrams is the main ingredient defining a gs-monoidal category
whose morphisms are freely generated by the boxes and wires in Σ. We define the category FreeGSΣ

as follows:

▷ Objects are given by the morphisms σ : n→ Σ for n ∈ N.

▷ Morphisms are the ”isomorphism classes“ of gs-monoidal diagrams.

Each object in FreeGSΣ corresponds to an element of the free monoid generated byW (G) or equiv-
alently a word over the alphabet W (G). Note that we will never spell out the labeling σ explicitly
because it is usually clear from the string diagram notation. The pushout of the cospans defines the
composition of two gs-monoidal diagrams. In detail, given two cospans n→ G← m andm→ H ← r

we have

G+m H

G H

n m r

u v

p q f h

(2.5)

This can be understood on the level of string diagrams as follows: The composed string diagram of two
separate diagrams G and H arises by gluing the output wires of G together with the input wires of H .

To show that FreeGSΣ is indeed a category, it is left to show that the composition of two gs-monoidal
string diagrams is again gs-monoidal, i.e. the underlying hypergraph is left monogamous as well as
acyclic. We will not further elaborate on this here; instead, we refer to [FL22, Lemma 3.8] for a proof.

As the name already suggests, FreeGSΣ is also a gs-monoidal category. The symmetric monoidal
product on the level of objects is given by the coproduct in Set. This is realized by the disjoint union,



28 Chapter 2. A categorical framework for causal models

i.e.

G+H : I→ Set

is defined as

(G+H)(⋆) := G(⋆) ⊔H(⋆) and (G+H)((k, l)) := G((k, l)) ⊔H((k, l))

together with the coproduct morphisms (G+H)(ini) := G(ini) +H(ini) as well as (G+H)(outj) :=

G(outj) +H(outj).

Applying this procedure to the discrete graphs n andm we obtain the graph n+m. Therefore, we
define the monoidal structure on the morphisms as G

n m

p q

⊗


H

k ℓ

r s

 :=

G+H

n+ k m+ ℓ

p+r q+s (2.6)

String diagrammatically the monoidal product of two hypergraphs in this setting is the union of
both diagrams without any connection in between. This precisely reflects the string diagrammatic
representation of f ⊗ g in a symmetric monoidal category.

Finally, the comonoid structure is given by the cospans

n

n n+ n

id id+id and
n

n ∅

id (2.7)

which satisfy the commutativity relations in Equations (1.1), (1.2), and (1.3).

Finally, we present the main theorem of this section, which shows that FreeGSΣ is the appropriate
definition for our purpose. In particular, the following theorem states that FreeGSΣ is the free gs-
monoidal category generated by the morphisms which are represented as boxes in the hypergraph
Σ.

For this purpose, note that every monoidal category can be seen as a hypergraph whose wires are the
objects and whose boxes with k inputs and ℓ outputs are the morphisms from a k-fold tensor product
to an ℓ-fold tensor product of objects in C. Formally, this assignment defines a functor

hyp : MonCat→ Hyp

whereMonCat is the category of monoidal categories.

Theorem 2.3. Let C be a strict gs-monoidal category whose monoid of objects is freely generated byW (Σ).
Restricting along the morphism

Σ→ hyp(FreeGSΣ)

there is a bijection between
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(i) identity-on-objects strict gs-monoidal functors FreeGSΣ → C

(ii) identity-on-wires hypergraph morphisms Σ→ hyp(C)

For a proof and a different 2-categorical universal property we refer to [FL22, Theorem 4.1, Corollary
4.7].

Intuitively, this result can be understood as follows: Consider a functor in (i) which is completely
determined by mapping morphisms in FreeGSΣ to morphisms in C. This functor induces a unique
hypergraph morphism in (ii). In other words, there is a unique labeling of boxes in Σ using boxes in
hyp(C). Conversely, labeling boxes by morphisms in C induces a unique gs-monoidal functor in (i).
This bijection implies that any labeling is already fully characterized by labels on the generating set of
morphisms.

2.4 Free Markov categories

FreeGSΣ is typically not a Markov category. For instance, the first step in the following transformation
in the first step does not hold in general since the (cospans of) hypergraphs are not isomorphic. In
contrast, the second equation does hold:

r s

g hf

̸=

r s

hf

=

r s

hf

(2.8)

In the following, we define the free Markov category FreeMarkovΣ by taking a quotient of FreeGSΣ

which enforces Equation (1.4), so that also the first equation above becomes true.

Definition 2.4. Let

φ :=

G

n m

p q (2.9)

be a gs-monoidal string diagram.

(i) A box b ∈ B(G) is called eliminable if each output of b gets discarded, i.e. if for everyW ∈W (G) such
that out(b,W ) > 0 we have

(a) q−1(W ) = ∅.

(b) in(b′,W ) = 0 for every box b′ ∈ B(G).

(ii) φ is called normalized if it contains no eliminable boxes.

Every gs-monoidal string diagram has a normalized version obtained by iteratively applying the rule
of Equation (1.4) to any eliminable box. Since every diagram is finite, this procedure terminates after
finitely many steps, and we reach the normalized version. In addition, this diagram is unique since
the order of elimination does not matter.
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The free Markov category FreeMarkovΣ is now defined as FreeGSΣ, but with morphisms restricted
to the normalized gs-monoidal string diagrams. The composition of morphisms is then defined as
composition inFreeGSΣ followed by normalization since the composition of two normalized diagrams
need not be normalized. See [FL22] for details.

Example 2.5. The morphism

φ =

a a

c

b

is not normalized, since the output of b gets discarded. Applying Equation (1.4), also the output of c
gets discarded. Therefore the normalization of φ is

norm(φ) =

a a

△

In general, normalizing a gs-monoidal string diagram defines a strict gs-monoidal functor

norm : FreeGSΣ → FreeMarkovΣ

that is identity-on-objects.

2.5 Generalized causal models

We now introduce the notion of a generalized causal model and define when a morphism in a Markov
category is considered compatible with a generalized causal model.

Definition 2.6 ([FL22, Definition 7.1]). Given a hypergraph Σ, a generalized causal model is a normalized
gs-monoidal string diagram (see Definition 2.2) over Σ such that q is injective.

Intuitively, a generalized causal model is a morphism in FreeMarkovΣ where the injectivity of q
ensures that each wire is connected to at most one output. This lets us identify any global input and
any global outputs with a wire inW (G) (see Notation 2.10). In the traditional terminology of random
variables, the injectivity of q guarantees that different outputs correspond to different variables.

One relevant subclass of generalized causal models is the class of pure blooms. These morphisms
represent causal models in which all variables are observed, i.e. every wire is an output in precisely one
way, such as in Example 2.8(i). This notion of causal models are introduced in [FL22]. We refer to this
source for a detailed study of pure blooms, in particular in the context of bloom-circuitry factorizations.
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Definition 2.7. Let φ be a generalized causal model represented by a gs-monoidal string diagram

φ =

G

n m

p q

Then φ is called pure bloom if q is a bijection on wires.

Pure bloommorphismswill be of special interest in Chapter 3. While the soundness5 of the d-separation
criterion holds for arbitrary generalized causal models (see Corollary 3.11), completeness holds only
for pure bloom morphisms (see Theorem 3.13).

Example 2.8. In the following, we will study examples and non-examples of (pure bloom) generalized
causal models.

(i) Let G = (V, A, s, t) be a directed acyclic graph where V is the set of nodes, A is the set of arrows,
and s, t : A → V are the source and target maps. The causal model generated by G can be
implemented as a morphism in FreeMarkovΣ by defining Σ by setting the set of generating
objects as V and morphisms being of the form⊗

W∈An(V )

W → V

where An(V ) is the set of ancestors of V ∈ V in G. The causal structure is then the induced
hypergraph Σ itself.

For example, the causal structure

Y Z

VW

reads as a string diagram as follows

p

f

V Y W

q

g

Z

In this situation, every wire of the gs-monoidal string diagram is automatically connected to an
output, i.e. φ is a pure bloom morphism. In particular, every string diagram arising from a DAG
is a pure bloom morphism without any input wires.

5i.e. the existence of a link between d-separation and conditional independence is a necessary criterion for causal
compatibility with a causal model.
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(ii) Unlike causal models, the morphisms in FreeMarkovΣ model Markov kernels instead of mere
probability distributions. More precisely, they allow for equipping Markov kernels with an
additional internal structure rather than only probability distributions as the DAG setting does.
One relevant example in physics in this context are Bell scenarios which are morphisms of the
form

f g

Λ

(2.10)

where Λ is a shared hidden variable between two separated parties and A,B are the local inputs
which might not have a fixed distribution.

(iii) An additional built-in feature of generalized causal models is the possibility of including symme-
try constraints in the morphism. For example, considering Equation (2.10) with the additional
constrained f = g leads to the morphism

f f

Λ

(2.11)

(iv) The gs-monoidal string diagram

r

gf

is a non-example to generalized causal models. This follows since a single wire is connected to
multiple outputs. We exclude such examples to avoid technical problems regarding categorical
d-separation in Section 3.1. △

To define causal compatibility, we make the following assumption for the rest of this thesis for conve-
nience:

Assumption 2.9. Throughout, C is a strict Markov category.

Although most examples like FinStoch, BorelStoch, or Stoch fail strictness, this does not exclude
these examples since we can always work with a strictification instead [Fri20, Theorem 10.17], which
satisfies Assumption 2.9. On the other hand, our free Markov categories FreeMarkovΣ already satisfy
this condition ”on the nose“. In any case, Assumption 2.9 is a useful convenience that holds without
loss of generality.
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Notation 2.10. For the rest of this thesis, we will assume that φ is a generalized causal model with

φ :=

G

n m

p q

which becomes a cospan in FinHyp/Σ through type : G→ Σ.

We identify inputs and outputs with the wires they map to under p and q and refer to them as such. In particular,
we define

in(φ) := p(n) ⊆W (φ) (2.12)
out(φ) := q(m) ⊆W (φ) (2.13)

for the set of all input/output wires. If φ is a pure bloom morphism, then out(φ) =W (φ).

Note that φ is a morphism

φ :
n⊗
i=1

type(p(i)) −→
m⊗
j=1

type(q(j))

in FreeMarkovΣ.

In the following, we present the notion of causal compatibility for a generalized causal model φ.
Intuitively, a morphism f in any Markov categoryC is compatible with φ if we can plug in a morphism
from C into every box in B(Σ) in such a way that the composite is exactly f , and such that the global
input and output wires of φ correspond to a given tensor factorization of the domain and codomain of
f :

Definition 2.11 (Compatibility). For Σ a hypergraph, let φ be a generalized causal model. Let further

f :

n⊗
i=1

W ′
i →

m⊗
j=1

V ′
j

be a morphism in any Markov categoryC satisfying Assumption 2.9, equipped with a fixed tensor decomposition
of its domain and codomain as indicated.

We call f compatible with φ if there exists a strict Markov functor6 F : FreeMarkovΣ → C such that:

(i) We have
W ′
i = F (type(p(i))), V ′

j = F (type(q(j))) (2.14)

for all input indices i = 1, . . . , n and output indices j = 1, . . . , k.

(ii) f = F (φ).

This generalizes the functorial definition of causal compatibility as first studied by Fong [Fon13].

Note that the functor F must assign to every type (i.e. a wire in Σ) a corresponding object in the
category C. This implies that wires inW (G)with identical types must map to the same object in C.

6i.e. a strict symmetric monoidal functor that preserves the comonoid structure.
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For example, one may consider a situation where f is a probability distribution with no inputs, and all
output variables are real-valued. In this case, we have V ′

j = R for all j, and one may want to consider a
causal model φ in which all wires are similar.

Similarly, the hypergraph morphism type : G → Σ assigns a specific ”type“ box in Σ to each box in
G. This means that under F , any two boxes with the same type must map to the same morphism in
C. This is why generalized causal models, in our sense, can naturally incorporate the condition that
several causal mechanisms must be the same, namely when choosing the types enforcing this.

In the following, we denote for every wire X ∈W (G) in φ the corresponding object F (type(X)) in C

byX ′. Similarly, for every set of wiresW ⊆W (G) in φ, we denote the corresponding multiset of wires
in C byW ′. For the rest of this thesis, we will associate this multiset with the corresponding tensor
product in C obtained by tensoring its elements, where we ignore the question of how to order the
factors.
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Chapter 3

Characterizing causal compatibility for
generalized causal models

Causal models are not only efficient representations of probability distributions, but they also unravel
causal relationships between variables. However, checking compatibility with certain models might
be a challenging task. In this chapter, we present the d-separation criterion as a way to decide causal
compatibility for causal models with access to all variables (i.e. no hidden variables) or in the language
of string diagrams for pure bloom causal models.

The main goal of this chapter is to prove that the d-separation criterion [Pea09, Section 1.2.3] correctly
detects causal compatibility not just in discrete probability but in all Markov categories with condition-
als and, therefore, also probability distributions in Gauss or BorelStoch. To this end, we introduce a
novel, categorical notion of d-separation phrased in terms of the connectedness of the gs-monoidal
string diagram representing the causal model. We show that this notion coincides with the classical
notion of d-separation whenever the latter applies.

The notion of d-separation for DAGs is a criterion relating conditional independence of a probability
distribution to the causal compatibility with an underlying DAG. In this chapter, we present a notion
of d-separation from a different perspective, namely a categorical notion of d-separation. This notion
looks very different, is much simpler than the classical notion, and applies to generalized causal models.
However, we prove that it coincides with the classical one when considering causal models on DAGs.

An output wire Z categorically d-separates the outputX from output Y ifX and Y become disconnected
upon marginalizing over all wires that are not involved in the d-separation relation and removing the
wire Z. Consider for example, again the DAG

Z

X Y

W

already introduced in Section 2.1. Z classically d-separates X from Y , based on the fact that the only
paths betweenX and Y are the colliderX →W ← Y and the forkX ← Z → Y .1 In the corresponding

1We define classical d-separation in the language of string diagrams in Definition 3.4. For an introduction to the traditional
notion of d-separation in the language of DAGs, we refer to [Pea09, Section 1.2.3].
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string diagram,
X YWZ

we witness categorical d-separation by first marginalizing over W , then removing the Z wire, and
finally observing that X and Y are disconnected, pictorially:

YZX

=

YZX

CutZ−−−−−−−−−−→

YX

On the other hand, X is not d-separated from Y byW and Z due to the collider X →W ← Y . In the
string diagram, this is apparent since upon removing the wires Z andW ,

X YWZ

CutW,Z−−−−−−−−−−−−→

YX

X and Y are still connected.

In Section 3.2, we prove that the categorical d-separation criterion applies to generalized causal models
in Markov categories. First, we show in Corollary 3.11 the soundness of the criterion and in Theo-
rem 3.13 the completeness of the criterion. More specifically, the soundness states that if a morphism
is compatible with a generalized causal structure (according to Definition 2.11) then categorical d-
separation in the gs-monoidal string diagram implies conditional independence of the compatible
morphism (according to Definition 1.16). Hence, conditional independence for every d-separated triple
of wires is necessary for compatibility. This link between d-separation and conditional independence is
known as the global Markov property (see Definition 3.12). For the completeness, we show that even the
weaker local Markov property suffices for compatibility of a morphism with a causal model. A central
assumption for the proof is the existence of conditionals (see Definition 1.14); hence, this d-separation
criterion applies to discrete variables, Gaussian random variables, and random variables arising from a
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distribution in a standard Borel space. Moreover, it generalizes the classical d-separation criterion also
in the sense of allowing random processes with inputs, i.e. Markov kernels instead of mere probability
distributions.

This chapter is structured as follows. In Section 3.1 we rigorously define categorical d-separation
and show that it sensibly generalizes classical d-separation. Finally, we show in Section 3.2 the main
result of this chapter. First, we show that d-separation implies conditional independence for compati-
ble morphisms (Corollary 3.11). Second, we show that d-separation completely determines causal
compatibility for pure bloom causal models (Theorem 3.13).

This chapter is mainly based on [FK22, Section 1, Section 6].

3.1 Categorical d-separation in string diagrams

In the following, we will introduce the notion of categorical d-separation. As already pointed out,
categorical d-separation is based on checking disconnectedness on the string diagram which arises
from the causal model by removing a set of wires.

Therefore, wewill start by formalizing the cutting procedure on gs-monoidal string diagrams. Consider
a gs-monoidal string diagram

φ =

G

n m

p q

and a set of output wires Z ⊆ out(φ), we define a new gs-monoidal string diagram CutZ(φ) in the
following way:

(i) Its underlying hypergraph H contains the same set of boxes B(H) = B(G) and those wires
which are not in Z , i.e.W (H) =W (G) \ Z .

(ii) Accordingly, the input and output wires of each box in B(H) remain the same up to all wires in
Z which are removed. Hence the arities of the boxes are lowered correspondingly.

(iii) We remove the in- and outputs connected to the wires in Z by lowering the cardinality of the
discrete hypergraphs n andm accordingly.

This procedure leads to the cospan

CutZ(φ) :=

H

n′ m′

p′ q′

Note that CutZ(φ) is usually not a morphism in FreeMarkovΣ anymore. This is because the boxes
in CutZ(φ) are generally not in Σ. Further the obtained string diagram also misses normalization.
However, it can still be understood as a morphism in the gs-monoidal category FreeGSH .

Before defining categorical d-separation, we introduce some notation regarding paths on wires in
string diagrams.

Definition 3.1. Let φ be a gs-monoidal string diagram in FreeGSΣ.
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(i) An undirected path between two wires X,Y ∈W (G) is a sequence of wires

X =W1, W2, . . . , Wn, Wn+1 = Y

together with a sequence of boxes b1, . . . , bn ∈ B(G) such that

in(bi,Wi) + out(bi,Wi) ≥ 1 and in(bi,Wi+1) + out(bi,Wi+1) ≥ 1.

If there exists an undirected path between X and Y , then we write X − Y .

(ii) For two wires A,B ∈W (G), we write A→ B if there exists a box b ∈ B(G) such that

in(b, A) = 1 and out(b, B) = 1. (3.1)

(iii) For two wires A,B ∈W (G), we write A↠ B if there exists a sequence of wiresW1, . . . ,Wn ∈W (G)

such that
A→W1 → . . . →Wn → B. (3.2)

A directed path in φ only allows input to output traversals. In contrast, an undirected pathmay traverse
a box not just from input to output or vice versa but also from input to input or output to output.

We are now ready to define the notion of d-separation. The intuitive idea behind categorical d-separation
was communicated to us by Rob Spekkens (see also [FL22, Remark 7.2]).

Definition 3.2 (Categorical d-separation). Let φ be a generalized causal model. For three disjoint sets of
output wires X ,Y,Z ⊆ out(φ), we say that Z d-separates X and Y if

CutZ(φX ,Y,Z)

has no undirected path between any output in X and any output in Y .

The string diagram φW is a shortcut for the marginal of φ onW ⊆ out(φ), i.e. φW := norm(delWc ◦ φ).

Intuitively, categorical d-separation can be also understood as topological disconnectedness of the
string diagrams containing the output sets X and Y .

Example 3.3. The following examples constitute the basic components of ”classical“ d-separation and
illustrate the simplicity of categorical d-separation. In all cases, the unlabeled boxes denote distinct
generators, i.e. distinct boxes in the generating hypergraph Σ.

(i) Fork: consider the morphism

φ =

YZX
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Then Z d-separates X from Y since

CutZ(φ) =

YX

has disconnected X and Y .

(ii) Chain: consider the morphism

φ =

X Z Y

Then Z d-separates X from Y since

CutZ(φ) =

X Y

has disconnected X and Y .

(iii) Collider: consider the morphism

φ =

X W Z Y

Then Z does not d-separate X from Y since we have

φX,Z,Y =

X Z Y

=

X Z Y



40 Chapter 3. Characterizing causal compatibility for generalized causal models

and therefore

CutZ(φX,Z,Y ) =

X Y

which still contains an undirected path X − Y . The same reasoning applies when Z = {W} or
Z = {W,Z}. However, if Z = ∅, then

φX,Y =

X Y

=

X Y

which disconnects X and Y . Therefore ∅ d-separates X and Y .

(iv) Consider the morphism

φ =

YZX W

A

The normalized marginal φX,Y,Z is given by

φX,Y,Z =

YZX

A

which again shows thatZ d-separatesX from Y since cuttingZmakesX and Y disconnected. △

In the following, we will translate the notion of classical d-separation into the language of string
diagrams and then show that both concepts, classical and categorical d-separation, coincide.

In order to define the classical notion of d-separation, we note that certain gs-monoidal string diagrams
have an underlying DAG (see Section 2.1). A central ingredient in the classical formulation of d-
separation is the notion of undirected paths on DAGs. However, translating these notions to string
diagrams does not produce an undirected path in the sense of Definition 3.1.
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For this reason, we use the term DAG path to refer to an undirected path in a DAG, i.e. to a sequence of
wires connected by boxes from input to output or vice versa (but not from input to input or output to
output). Moreover, we define the set of ancestor wires, given a set of wires, as

An(X ) = {U ∈W (G) : ∃X ∈ X such that U ↠ X}.

and the set of descendant wires as

Dec(X ) = {U ∈W (G) : ∃X ∈ X such that X ↠ U}.

Note that X ⊆ An(X ),Dec(X ) since X ↠ X holds by definition.

Since the definition of classical d-separation is traditionally given in the setting of DAGs (see for
example [Pea09, Definition 1.2.3]), we now restrict to those gs-monoidal string diagrams that arise
from an underlying DAG. In a causal structure represented by a DAG, it is (implicitly) assumed that
every node or variable has its own causal mechanism associated with it; in our framework, this means
that every box has exactly one output. Moreover, DAGs have no global inputs, which implies in our
framework that in(φ) = ∅. Finally, every variable in a DAG is usually assumed to be accessible.2 This
translates to string diagrams by assuming that every wire is connected to an output, i.e. the causal
model is pure bloom.

Definition 3.4 (Classical d-separation). Let φ be a pure bloom causal model with in(φ) = ∅ and such that
every box has exactly one output. Then:

(a) A DAG path p in φ is called d-separated by a set of wires Z ⊆ out(φ) if:

(i) p contains a chainW → Z → U or a forkW ← Z → U for some Z ∈ Z .

(ii) p contains a colliderW →M ← U whereM /∈ An(Z).

(b) X is d-separated from Y by Z if every DAG path between every X ∈ X and Y ∈ Y is d-separated by Z .

We will now prove the equivalence of categorical d-separation with classical d-separation for the class
of causal models on which the latter is defined. This implies that categorical d-separation is a suitable
generalization of classical d-separation, which is simpler than the original one.

To this end, we first have to show a preparatory lemma.

Lemma 3.5. Let φ be a pure bloom causal model, b ∈ B(G) a box in φ, andW ⊆ out(φ) a subset of its wires.
The following statements are equivalent:

(i) out(b) ∩ An(W) = ∅.

(ii) b gets discarded in φW = norm(delWc ◦ φ).

Proof. (ii) =⇒ (i): To prove the contrapositive, assume ∃A ∈ out(b) such that A ∈ An(W). Then there
is a path A↠W withW ∈ W . SinceW is still an overall output that does not get discarded, this path
is still valid in delWc ◦ φ. Therefore b remains in norm(delWc ◦ φ).

2This holds, unless we consider DAGs with a specified set of latent variables. However, the classical d-separation criterion
does not apply to this setting.
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(i) =⇒ (ii): Consider the set Dec(out(b)). By assumption, we have that Dec(out(b)) ∩ An(W) = ∅.
We show that the box b gets discarded in norm(delDec(out(b)) ◦ φ), which is enough because ofWc ⊇
Dec(out(b)). By definition of Dec(out(b)), there exists a final box3 b̂ such that out(b̂) ⊆ Dec(out(b)). This
shows that b̂ gets discarded in norm(delDec(out(b̂)) ◦ φ).

Define φ̃ := norm(delDec(out(b̂)) ◦ φ). Repeating the above procedure with φ̃, we arrive after a finite
number of steps at b being a final box. Since it is then eliminable after composing with delDec(out(b)), it
no longer appears in the normalization.

We will now show the equivalence between categorical d-separation and classical d-separation in the
cases where φ represents a causal structure given by a DAG.

Proposition 3.6. Both concepts of d-separation coincide on pure bloom causal models φ with in(φ) = ∅ and in
which every box has exactly one output.

Proof. To make the proof more intuitive, we introduce the term d-connected as the negation of d-
separated (in either version).

We start by showing that classical d-connectedness implies categorical d-connectedness. Let p be a DAG
path between some X ∈ X and some Y ∈ Y , which witnesses that Z makes X and Y be d-connected
in the classical sense, which means that the following hold:

(i) For every chainW →M → U or forkW ←M → U in p, we haveM ̸∈ Z .

(ii) For every colliderW →M ← U in p, we haveM ∈ An(Z).

For simplicity, we also assume without loss of generality that p contains only one wire twice from X
and Y each, say X and Y , respectively. Then this p can also be interpreted as an undirected path in φ,
but generally not in φcut := CutZ(φX ,Y,Z), since it may traverse wires that are not in φcut. However, we
now show that there still is an undirected path p′ between X and Y in φcut. By the above assumption
(i), if p contains a wire Z ∈ Z , then it has to arise from a collider U → Z ←W in p. Removing wire Z
from p still defines a valid undirected path between X and Y , pictorially:

...
...

X Y

Z

U W
=⇒ ...

...

X Y

U W

We prove that the path p′ obtained by removing all wires in Z from p like this is an undirected path in
φcut, which implies categorical d-connectedness. To this end, it only remains to show that each wire in
p′ is an existing wire in φcut, which we do as follows:

(i) X and Y themselves are still in φcut.

(ii) Every Z ∈ Z in p is part of a collider U → Z ←W as above, so that U,W ∈ An(Z). This implies
that U andW survive in φX ,Y,Z by Lemma 3.5.

3As defined in [FL22], a final box is one whose outputs are global outputs of φ without further copy or discard. Such a
box always exists since φ is pure bloom and normalized (compare [FL22, Lemma 4.6]).
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(iii) Since U andW are themselves either the middle node in a chain or fork or the start or end of p,
we have U,W ̸∈ Z . This implies U,W ∈ An(Z) \ Z , and therefore U andW survive also in φcut.

(iv) For every chainW → M → U in p, if U survives in φcut, then so doesM (since it survives in
φX ,Y,Z andM ̸∈ Z).

(v) For every forkW ←M → U in p, if U orW survives in φcut, then so doesM (since it survives in
φX ,Y,Z andM ̸∈ Z).

Since the wires in p′ are exactly those of pminus some of the colliders, we can start with the first two
observations and then apply the latter two repeatedly on any segment bounded by colliders or the
starting node X or the final node Y in order to conclude that all wires in p′ are present in φcut. This
concludes one direction of the proof.

The converse direction of showing that categorical d-connectedness implies classical d-connectedness
works similarly. Let p be an undirected path between X ∈ X and Y ∈ Y in φcut. We assume without
loss of generality that all wires in p are distinct. Furthermore, we also assume without loss of generality
that p is of the form

X ↞ A−B ↠ Y, (3.3)

where every wire that is in between A and B is not contained in An(X ) or An(Y), or equivalently
that every wire in p that is also in An(X ) is directly reached from X by output-to-input traversals
in p, and similarly for all wires in An(Y). This property can be achieved by taking every wire in p
which is additionally in An(X ) and replace it by the path fromX to it by a sequence of output-to-input
traversals, and similarly for every wire in An(Y). Note that this replacement may involve changing the
starting and ending wires X and Y as well.

In order to turn p into a DAG path p′ that witnesses classical d-separation, we need to remove all
direct input-to-input traversals of a box in p; direct output-to-output traversals cannot occur due to the
assumption that every box has exactly one output. We can hence simply add to p the unique output
wire of every box that has an input-to-input traversal in p, and we obtain a valid DAG path p′.

It remains to verify the conditions on chains, forks and colliders. Clearly p′ does not contain any chain
W → Z → U or forkW ← Z → U with Z ∈ Z , since such a configuration cannot occur in p to begin
with. For a collider W → M ← U , the unique box which outputsM must be contained in φX ,Y,Z ,
and therefore be in An(X ∪ Y ∪ Z) by Lemma 3.5. However,M being in An(X ) or An(Y) violates the
assumption that p is of the form (3.3). ThereforeM has to be in An(Z), showing the collider condition
(ii).

A necessary criterion for categorical d-separation is given by constraints on in- and outputs of the boxes
in the causal model. We will record this in the following lemma. These constraints are the essential
ingredient to prove conditional independence in Lemma 3.9.

Lemma 3.7. Let φ be a pure bloom causal model and X ,Y,Z ⊆ out(φ) a partition of all output wires such
that Z categorically d-separates X and Y . Then every box b ∈ B(G) in φ satisfies at least one of the cases:

(i) in(b), out(b) ⊆ X ∪ Z .

(ii) in(b), out(b) ⊆ Y ∪ Z .
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Proof. Suppose there exist Y ∈ Y ∩ out(b) and X ∈ X ∩ out(b). In that case, these wires are still in the
output of b in φcut, and this contradicts the assumed disconnectedness of φcut with respect to X and Y .
Since X ,Y,Z form a partition, this shows that either out(b) ⊆ X ∪ Z or out(b) ⊆ Y ∪ Z .

Proving out(b) ⊆ X ∪ Z ⇒ in(b) ⊆ X ∪ Z and out(b) ⊆ Y ∪ Z ⇒ in(b) ⊆ Y ∪ Z works similarly, and
this then proves the statement.

Pictorially, Lemma 3.7 shows that if Z d-separates X and Y , then every box b in φ is of the form

Z2X2

X1 Z1

or

Z2Y2

Y1 Z1

where Xi ⊆ X , Yi ⊆ Y , Zi ⊆ Z .

3.2 The d-separation criterion

In the following, we show that d-separation implies conditional independence for any generalized
causal model. We first prove this result for a partition of wires in a pure bloom causal model in
Lemma 3.9. We then refine it to any disjoint collection of wires in Corollary 3.11 in any generalized
causal model. Finally, we show in Theorem 3.13 that d-separation fully characterizes causal compati-
bility for pure bloom causal models in all Markov categories with conditionals. Throughout, we also
use the following convenient notation:

Notation 3.8. Suppose a morphism f in C is compatible with a causal model φ in the sense of Definition 2.11.
In that case, we refer to the wires of φ to indicate conditional independence instead of the objects in the tensor
factorization of f . In other words, instead of writing X ′ ⊥ Y ′ | Z ′, we simply write X ⊥ Y | Z .

Here, eachW ′ = F (type(W )) is the object in C associated with the wireW by the causal model functor F (see
Definition 2.11).

We will now show the soundness of d-separation under the additional conditions that φ is a pure
bloom causal model and that the d-separation is among a tripartition of wires. As shown later in
Corollary 3.11, this result remains true even without these assumptions.

Lemma 3.9. Let C be a strict Markov category with conditionals, and let φ be a pure bloom causal model.
Further, let X ,Y,Z ⊆ out(φ) be a partition of wires in φ such that in(φ) ⊆ Y ∪Z and X and Y are d-separated
by Z .

If a morphism f in C is compatible with φ, then X ⊥ Y | Z (as in Definition 1.16).

Proof. Choose a total ordering of all boxes b1, . . . , bk−1 ∈ B(G) and a chain of sets of wires in out(φ),

in(φ) =W1 ⊆ . . . ⊆ Wk = out(φ),
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such thatWi+1 = out(bi) ∪Wi and An(Wi) =Wi. Note that there is a factorization

φ =

ψi

Wi Wc
i

ηi

in(φ)

in FreeMarkovΣ, where ηi is again a pure bloom and η1 is an identity morphism. The existence of
such a chain of sets follows easily by induction on the number of boxes based on the existence of a
final box.4

Then for every i ∈ {1, . . . , k}, we show the existence of a decomposition

f =

F (ψi)

(Wc
i )

′

(Y ∩Wi)
′(Z ∩Wi)

′(X ∩Wi)
′

in(φ)′

(3.4)

SinceWc
n = ∅, setting i = k proves the desired statement.

We prove this stronger claim by induction on i. The start of the induction at i = 1 is trivial since η1 is
the identity and therefore

f =

F (ψ1)

(Wc
1)

′

(Z ∩W1)
′ (Y ∩W1)

′

in(φ)′

4Note that restricting to causal models arising from DAGs, this statement amounts to the standard fact that every DAG
gives rise to a topological ordering where a ≼ b if a ∈ An({b}) (see for example [TM11, Section 5.7]). The maximal element
of this ordering then corresponds to the final box in the string diagram.
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since Y ∩W1 = Y ∩ in(φ) = ∅. For the induction step, we prove the statement at i+ 1. Since φ is pure
bloom and An(Wi+1) = Wi+1, we can peel off the box bi withWi+1 = out(bi) ∪Wi from ψi, so as to
achieve the decomposition

f = ki

F (ψi+1)

(Wc
i+1)

′

(X ∩Wi)
′ (Z ∩Wi)

′ (Y ∩Wi)
′F (bi)

out(bi)
′

in(φ)′

hi

(3.5)

where we have used the induction assumption to obtain a decomposition as in the lower half, and the
dashed wires indicate that only some of them may be present since the inputs of bi are an unspecified
subset ofWi. By Lemma 3.7, we have to distinguish two cases:

(i) in(bi), out(bi) ⊆ X ∪ Z . Then, the third dashed wire in the above decomposition of f is not
needed, and we consider the morphism

g :=

(X ∩Wi)
′

F (bi)

(out(bi) ∩ Z)′(out(bi) ∩ X )′ (Z ∩Wi)
′

(Z ∩Wi)
′

which is part of that decomposition. By the existence of conditionals, we can rewrite g in the
form

g =

(X ∩Wi+1)
′ (Z ∩Wi+1)

′

(Z ∩Wi)
′

=

(X ∩Wi+1)
′ (Z ∩Wi+1)

′

(Z ∩Wi)
′
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where both lower boxes can be refined with an internal structure consisting of carrying (Z ∩Wi)
′

forward on a separate wire, but this internal structure is not relevant for the remainder of the
proof. Substituting this form of g into Equation (3.5), i.e. replacing the morphism ki there with
the left box here and merging the lower box here with hi there, proves the induction step.

(ii) in(bi), out(bi) ⊆ Y ∪Z . Then, the first dashed wire in the above decomposition of f is not needed,
and we can merge F (bi) with hi, which shows the statement.

We will now generalize Lemma 3.9 to all generalized causal models and to arbitrary disjoint sets X , Y
and Z which do not necessarily partition the set of all wires.

Lemma 3.10. Let φ be a generalized causal model and X , Y , Z ⊆ out(φ) a tripartition of output wires in φ
such that in(φ) ⊆ Y ∪ Z and such that Z categorically d-separates X and Y . Then there exists a tripartition of
wires X̃ ⊇ X , Ỹ ⊇ Y , Z in the pure bloom version φpure-bloom of φ5 such that

Z d-separates X̃ and Ỹ in φpure-bloom

Proof. With φcut := CutZ(φpure-bloom), define

X̃ := {U ∈ out(φcut) : ∃X ∈ X : X − U in φcut} ⊇ X

to be the connected component of X in φcut, and

Ỹ := out(φpure-bloom) \
(
X̃ ∪ Z

)
⊇ Y.

By definition, X̃ , Ỹ , Z form a tripartition of wires in φpure-bloom. Moreover, X̃ and Ỹ are categorically
d-separated by Z since any path in CutZ(φpure-bloom) is valid in CutZ(φ) and vice versa.

Corollary 3.11. Let C be a strict Markov category with conditionals, and let φ be a generalized causal model.6
Further, let X ,Y,Z ⊆ out(φ) be disjoint sets of output wires in φ such that in(φ) ⊆ Y ∪ Z and X and Y are
d-separated by Z . If f is compatible with φ, then X ⊥ Y | Z .

In this statement, we use another standard convention: when the disjoint sets X ,Y,Z do not partition
the set of wires ofφ, then the conditional independenceX ⊥ Y | Z is to be understood as Definition 1.16
applied to the corresponding marginal fX ′,Y ′,Z′ rather than to f itself.

Proof. We prove this statement by reducing it to the case of pure bloom causal models treated in
Lemma 3.9.

Consider the restricted causal model ψ := φX ,Y,Z and its compatible morphism g := F (ψ) obtained
from the compatibility of f withφ, which is amarginal of f . By the definition of categorical d-separation,
Z d-separates X and Y also in ψ. Let ψpure-bloom be the pure bloom version of ψ. Since g is compatible
with ψ, we can extend g to a pure bloom version

gpure-bloom := F (ψpure-bloom)

5The pure-bloom version φpure-bloom is obtained by copying each wire so to make it into an output. It is part of the
bloom-circuitry factorization of [FL22].

6In this situation φ does not need to be pure bloom.
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of which g is a marginal.

By Lemma 3.10, for ψpure-bloom there is a tripartition of output wires X̃ ⊇ X , Ỹ ⊇ Y , Z such that Z
d-separates X̃ and Ỹ . Since C has conditionals, Lemma 3.9 provides us with a decomposition of the
form

gpure-bloom =

Ỹ ′Z ′
X̃ ′

in(φ)′

By marginalizing over X̃ ′ \ X ′, Ỹ ′ \ Y ′ in gpure-bloom, we obtain the desired conditional independence
for the marginal fX ′,Y ′,Z′ .

Note that this result includes the soundness of the classical d-separation criterion in the classical case
of discrete random variables in Bayesian networks.7 This special case is obtained when restricting to
pure bloom causal models with in(φ) = ∅ and single output boxes (i.e. the setting of Proposition 3.6),
as well as restricting to the Markov category FinStoch. In this case, conditional independence reduces
to Definition 1.15 by Remark 1.17.

Following conventions in the study of Bayesian networks, Corollary 3.11 states that every probability
distribution compatible with a causal structure satisfies a certain type of Markov property. In the
following, we introduce the local and global Markov property in the context of generalized causal models.
These allow for a simple formulation of the d-separation criterion. The original definitions in the
language of DAGs go back to [KSC84] and [Lau96].

Definition 3.12. Let φ be a generalized causal model and f a morphism in a strict Markov category C. Then
we say that f satisfies:

(i) the global Markov property with respect to φ if for every three disjoint sets of outputs X ,Y , Z ⊆ out(φ)

with in(φ) ⊆ Y ∪ Z :

X and Y are categorically d-separated by Z in φ =⇒ X ⊥ Y | Z in f.

(ii) the local Markov property with respect to φ if for every box b in φ, we have

out(b) ⊥ Dec(out(b))c \ in(b) | in(b) in f.

The local Markov property states that every output of a box can be sampled independently from
all non-descendants of the box only by accessing the information of the input wires of the box. In
the following, we show that although the local Markov property is weaker than the global Markov
property, it suffices for compatibility of a morphism with a generalized causal model.

Theorem 3.13 (The categorical d-separation criterion). Suppose we are given the following:

7See [VP90] for the original proof and [Pea09, Theorem 1.2.5(i)] for a textbook account.
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▷ C is a strict Markov category with conditionals.

▷ φ is a pure bloom causal model over a hypergraph Σ such that each box in φ has a distinct type.

▷ f :
⊗n

i=1W
′
i →

⊗m
j=1 V

′
j is a morphism in C.

Then the following statements are equivalent:

(i) f is compatible with the causal model φ.

(ii) f satisfies the global Markov property.

(iii) f satisfies the local Markov property.

Proof. (i) =⇒ (ii): The global Markov property is precisely the statement of Corollary 3.11.

(ii) =⇒ (iii): This follows from the fact that Dec(out(b))c and out(b) are d-separated by in(b), and
in(φ) ⊆ Dec(out(b))c, which makes the global Markov property specialize to the local one.

(iii) =⇒ (i): We prove this statement by induction over the number of boxes k := |B(G)|. The case k = 1

is trivial. For the step from k to k + 1, let b be a final box in φ, which means that Dec(out(b)) = out(b).
Then, φ factorizes as

φ =
ψ

in(φ)

out(b) in(b)

b

where ψ is another causal model satisfying all of our assumptions, and no box in ψ has the same type
in Σ as b does.

In order to construct a functor F as in Definition 2.11, note first that it must satisfy (2.14), which
already lets us write the domain of f as in(φ)′, and similarly for the codomain. Since f satisfies the
local Markov property with respect to b, we can decompose f by Definition 1.16 as

f

in(φ)′

out(b)′

=

g

in(φ)′

out(b)′ in(b)′

h

(3.6)

By the induction hypothesis, we have that g is compatible with ψ since g satisfies the local Markov
properties specified by ψ. Since box b appears only once in φ, we can freely define the action of the
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functor F on b as F (b) := h. Then, we obtain

f =

g

in(φ)′

out(b)′ in(b)′

h

=

F (ψ)

in(φ)′

out(b)′ in(b)′

F (b)

= F (φ)

where we use in the first step Equation (3.6) and in the last the fact that F is a Markov functor.

Remark 3.14. (i) Note that we have used the assumption that C has conditionals only for the
implication (i) =⇒ (ii). Therefore, for an arbitrary strict Markov category, the global as well
as the local Markov property is a sufficient condition for the compatibility of a morphism with
a generalized causal model (satisfying our assumptions). However, these Markov properties
implicitly require the existence of certain conditionals. Consider for example the generalized
causal model

φ =

X YM

where all boxes are of distinct types. Choosing X = {M},Y = ∅ and Z = {X,Y }, a morphism
f satisfying the global Markov property displays in particular the conditional independence
{M} ⊥ ∅ | Z , pictorially:

f =
f|Z

X Z

This shows that the conditional f|Z exists, and this recovers the box that outputsM (up to almost
sure equality).

(ii) Theorem 3.13 shows that d-separation correctly detects causal compatibility for the Markov
categories FinStoch,Gauss, or BorelStoch. For the Markov category Stoch, which does not
have conditionals, the global and local Markov properties are at least sufficient for compatibility
since our proof of these implications has not used conditionals.

(iii) Note that Theorem 3.13 only applies to causal models where each box appears at most once
in the model (which implies that φ has no nontrivial symmetries). However, the implication
(i) =⇒ (ii) applies to arbitrary generalized causal models as proven in Corollary 3.11. △

While the proof requires that φ is a pure bloom causal model, it is an open question whether the
d-separation criterion extends to symmetric causal models (i.e. not every box has a distinct type in Σ)
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by adding an appropriate symmetry constraint to the Markov properties.

Question 3.15. Can Theorem 3.13 be extended to more general causal models? In particular, what about
allowing the same box to appear several times in φ?

Example 3.16. We now present two examples that go beyond the classical d-separation criterion. In (i)
we will study a causal structure that does not arise from a DAG, while in (ii) we study a DAG causal
structure with continuous variables.

(i) Let φ be the causal structure

h

gf

YX Z1 Z2

and let C be a strict Markov category with conditionals. By Theorem 3.13, a morphism t : I →
X ′ ⊗ Z ′

1 ⊗ Z ′
2 ⊗ Y ′ in C is compatible with this structure if and only if it satisfies

X ⊥ {Y,Z2} | Z1 and Y ⊥ {X,Z1} | Z2

For a general class of examples, consider X ′ = Z ′
2 and Y ′ = Z ′

1 and any morphism in C of the
form

r

Z ′
2 Z ′

1 Z ′
2 Z ′

1

We claim that such a distribution is compatible with φ if and only if there exist morphisms d and
d′ such that

r

Z ′
1 Z ′

2 Z ′
2

=

s

d

=

s

dd

(3.7)

where s is the first marginal of r, and similarly d′ : Z ′
2 → Z ′

1 satisfies the same equations the
other way around. Here, the second equation states that the morphism d is s-a.s. deterministic
[Fri20, Definition 13.11], and similarly for d′.
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Indeed, assuming compatibility we have that

r

Z ′
1 Z ′

2

=

r

Z ′
1 Z ′

2

F (f)

(3.8)

which shows the first equality in Equation (3.7). For the second equality, we have that

r

Z ′
1 Z ′

2 Z ′
2

=

r

a

Z ′
1 Z ′

2 Z ′
2

=

r

aF (f)

Z ′
1 Z ′

2 Z ′
2

where we have used the conditional independence Z2 ⊥ X | Z1 in the first step and Equation
(3.8) in the second step. Since the morphism is symmetric with respect to permutations of the
output wires X and Z2, we have a = F (f) s-a.s. which shows the second equality in Equation
(3.7). Proving the existence of d′ works analogously by interchanging the roles of X and Y as
well as Z1 and Z2.

Conversely, we have

r

Z ′
2 Z ′

1 Z ′
2 Z ′

1

=

r

d

=

r

dd

=

r

d

wherewe have used the assumption that d is s-a.s. deterministic in the second equation. Repeating
this calculation, interchanging the roles of Z1 and Z2 as well as X and Y , shows the statement.

(ii) Consider the instrumental scenario given by the DAG

A B

Λ

X

This has been previously studied mainly in the context of DAGs with latent variables [Pea95;
Bon01]. For our analysis, we assume each variable to be observed, which means that the causal
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structure reads string-diagrammatically as

φ =

X A B Λ

(3.9)

There are two non-trivial d-separations:

(a) Between X and B by {A,Λ},

(b) Between X and Λ.

Therefore, Theorem 3.13 implies that a distribution P on a four-fold tensor product object in a
Markov category with conditionals is compatible with φ if and only if X ⊥ B | A,Λ and X ⊥ Λ.
In BorelStoch, this means that P is compatible with φ if and only if

P (X ∈ E1, A ∈ E2, B ∈ E3,Λ ∈ E4)

=

∫
E2

∫
E4

PX|A,Λ(X ∈ E1|a, λ)PB|A,Λ(B ∈ E3|a, λ)PA,Λ(da,dλ)

and

P (X ∈ E1,Λ ∈ E4) = P (X ∈ E1) · P (Λ ∈ E4)

where Ei are measurable sets in the Borel σ-algebras of the spaces X ′, A′, B′ and Λ′.

For simplicity, assume that all random variables take values in R and are absolutely continuous,
i.e. there exists a density f : X ′ ×A′ ×B × Λ′ → [0,∞) such that

P (X ∈ E1, A ∈ E2, B ∈ E3,Λ ∈ E4) =

∫
E1×E2×E3×E4

f(x, a, b, λ) dx da dbdλ

The causal compatibility now amounts to the following two conditions:

(a) X ⊥ Λ, i.e.
fX,Λ(x, λ) = fX(x) · fΛ(λ) a.e. (3.10)

where a.e. means almost everywhere with respect to the Lebesgue measure on R.

(b) X ⊥ B | A,Λ, i.e.

f(x, a, b, λ) = fX|A,Λ(x, a, λ) · fA,Λ(a, λ) · fB|A,Λ(b, a, λ) a.e., (3.11)

where the conditional densities are defined implicitly by

fA|XΛ(a|x, λ) · fX,Λ(x, λ) = fX,A,Λ(x, a, λ) a.e.
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Combining Eq. (3.10) and Eq. (3.11) results in

f(x, a, b, λ) = fΛ(λ) · fX(x) · fA|XΛ(a, x, λ) · fB|A,Λ(b, a, λ) a.e.

which is the usual factorization condition for compatibility with the causal structure in (3.9). △
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Chapter 4

Conclusion and Outlook

In this thesis, we have studied the causal compatibility problem in the language of categorical prob-
ability. We have reviewed the concept of Markov categories as an abstract model of probability
independent of the usual measure-theoretic axiomatization. Further, we have used the framework of
Markov categories as a toolbox to describe and study causal models using free Markov categories.

In Chapter 1, we have reviewed the key concepts of categorical probability, building on the framework
of Markov categories (Definition 1.1). We have introducedMarkov categories and studied the construc-
tion of several concrete examples like finite probability distributions (Example 1.3), Gaussian proba-
bilities (Section 1.2.3), Borel probability distributions (Section 1.2.2), and general measure-theoretic
probabilities (Section 1.2.1). Further, we have reviewed the existence of conditionals (Section 1.3) and
conditional independence (Section 1.4) in Markov kernels which are central in deciding compatibility
via the d-separation criterion.

In Chapter 2, we introduce the categorical framework to study causal models as string diagrams. We
start by reviewing the category of hypergraphs (Section 2.2) which is the basic toolbox for building up
string diagrams. Later, we review the construction of free gs-monoidal and free Markov categories
(Section 2.3 and Section 2.4), which arise as hypergraphs with certain properties. Finally, we define
generalized causalmodels (Section 2.5) asmorphisms in freeMarkov categories, which are gs-monoidal
string diagrams.

In Chapter 3, we study the causal compatibility problem for generalized causal models by investigating
the d-separation criterion. We show that the d-separation criterion fully characterizes causal compat-
ibility for Markov categories with conditionals (Theorem 3.13) and pure bloom causal models (i.e.
causal models with access to all random variables). We introduce a categorical version of d-separation
(Definition 3.2), which arises from topological disconnectedness in string diagrams. This notion
constitutes a meaningful generalization of classical d-separation on DAGs (Definition 3.4). Moreover,
the correspondence to disconnectedness makes categorical d-separation more intuitive than its classical
counterpart.

This abstract treatment of causal compatibility with the d-separation leads to several open questions:

▷ The framework of generalized causal models allows for symmetric versions of causal models
(i.e. models that contain multiple identical processes, see Example 2.8 (iii)). However, the d-
separation criterion only decides compatibility for causal models without explicit symmetry. It is
an open question whether this can be generalized to symmetric models (see also Question 3.15).

▷ In contrast to DAGs, generalized causal models also manifestly include causal models with
latent variables. While the soundness of the d-separation criterion holds for arbitrary causal
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models (including models with latent variables), having access to all variables (i.e. restricting
to pure bloom causal models) is essential for proving the completeness of the d-separation
criterion. The inflation technique [WSF19; NW20] constitutes a powerful method to fully decide
causal compatibility with a given DAG model, including even latent variables. More specifically,
[WSF19] shows the soundness and [NW20] the completeness of the criterion. However, the
inflation technique is so far only developed for discrete random variables. We expect that it
naturally extends to generalized causal models and morphisms in certain Markov categories.

▷ Since we have a purely abstract result of causal compatibility on Markov categories, a natural
question is whether this result leads to interesting and meaningful statements for other concrete
Markov categories going beyond probability theory, for example, certain hypergraph categories
(see [Fri20, Section 8] and references therein).

Concluding, string diagrams constitute a new approach for causal models which generalizes DAGs
in several directions. In addition, d-separation attains a much simpler description in the language of
string diagrams than in the traditional DAG setting. This is not completely surprising; string diagrams
in Markov categories model information flow, which motivates the link between disconnectedness of
string diagrams and conditional independence of compatible stochastic maps.

These observations suggest that string diagrams might be a more natural framework for causal models
than DAGs.
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Appendix A

Construction of the Giry monad

In this appendix, we give a detailed construction of the Giry monad, which has been used to introduce
the Markov categories Stoch and BorelStoch in Section 1.2.

Let Meas be the category of measurable spaces, i.e. objects being measurable spaces (X,ΣX) (Defini-
tion 1.10) and morphisms f : X → Y being measurable maps (Definition 1.11).

To construct the Giry monad we start by defining the functor1

P : Meas→Meas with P(X,ΣX) =
(
P (X,ΣX),ΣPX

)
where

P (X,ΣX) :=
{
p : ΣX → [0, 1] : p probability measure

}
and ΣPX is the smallest σ-algebra on P (X,ΣX) that makes the evaluation map

evalA : P (X,ΣX)→ [0, 1] : p 7→ p(A)

measurable2 for every measurable set A ∈ ΣX .

In other words, ΣPX can be written as

ΣPX = σ
({

eval−1
A ([0, r]) : 0 ≤ r ≤ 1, A ∈ ΣX

})
,

see Equation (1.24), where we have additionally used that sets of the form [0, r]with 0 ≤ r ≤ 1 generate
the Borel σ-algebra B([0, 1]).

A morphism f : X → Y inMeas, i.e. a measurable function, is mapped to the pushforward

Pf := f⋆ : P (X,ΣX)→ P (Y,ΣY ) : p 7→ f⋆ p := p ◦ f−1.

This definition coincides with the finite case which shows that the Giry monad generalizes the discrete
probability monad (Example 1.9).

However, in contrast to the discrete probability functor, it is not apparent whether this functor is indeed
an endofunctor (i.e. mapping into Meas again). For this reason, we have to show that f⋆ : PX → PY
is a morphism inMeas.

1In the following, we will also use the notation PX := P (X,ΣX), P2 := PPX , . . . to address the set of probability
distributions on sets of probability distributions

2The set [0, 1] is equipped with the Borel σ-algebra B([0, 1]).
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Lemma A.1. Let f : X → Y be ΣX - ΣY measurable. Then, the pushforward

f⋆ : P (X,ΣX)→ P (Y,ΣY ) : p 7→ f⋆ p

is ΣPX - ΣPY measurable.

Proof. Since pre-images of the evaluation maps are the generating sets of ΣPY , it remains to show that
for every A ∈ ΣY and every 0 ≤ r ≤ 1 the following holds:

(f⋆)
−1
(
eval−1

A ([0, r])
)
∈ ΣPX .

For every probability measure µ ∈ P (X,ΣX) and every measurable set A ∈ ΣY we obtain

(evalA ◦ f⋆ )(µ) = evalA(f⋆ µ) = µ(f−1(A)) = evalf−1(A)(µ).

This implies that,

(f⋆)
−1
(
eval−1

A ([0, r])
)
= (evalA ◦ f⋆)

−1([0, r]) = eval−1
f−1(A)

([0, r]) ∈ ΣPX

which shows the statement.

Since PidX = idPX and

P(f ◦ g) = (f ◦ g)⋆ = − ◦ (f ◦ g)
−1 =

(
− ◦ g−1

)
◦ f−1 = P(f) ◦ P(g)

P is indeed a functor.

In the following, we will equip P with a monad structure. In order to prove the commutativity of the
diagrams in Definition 1.4, we will use the following lemma, which relates integrals over measures
that are connected via a pushforward f . A proof of this statement can be found for example in [Bog07,
Theorem 3.6.1].

Lemma A.2 (Change-of-variables formula). Let f : X → Y be a measurable function and g : Y → R
integrable with respect to µ ∈ P (Y,ΣY ). Then, g ◦ f is integrable with respect to f⋆ µ ∈ P (X,ΣX) and∫

X

(g ◦ f)(x) µ(dx) =
∫
Y

g(y) (f⋆ µ)(dy).

The basic idea behind the unit in the monad is similar to the discrete distribution monad. More
specifically, the unit ηX assigns the Dirac δ-distribution at x to every element x ∈ X . Hence, we define
the unit η : id⇒ P , by setting

ηX : (X,ΣX)→ P (X,ΣX) : x 7→ δx.

We start by showing that ηX is well-defined, i.e. it is measurable. To this end, let 0 ≤ r ≤ 1 andA ∈ ΣX .
We have

η−1
X

(
(evalA)

−1([0, r])
)
=

{
Ac r < 1

X r = 1
∈ ΣX

since δx(A) ∈ {0, 1}.
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Moreover, η is a natural transformation since the naturality square

X Y

P (X,ΣX) P (Y,ΣY )

f

ηX ηY

f⋆

commutes, which is obtained by

δf(x)(A) = δx(f
−1(A)) =

(
f⋆ δx

)
(A)

for every x ∈ X , morphism f : X → Y and A ∈ ΣY .

Defining the multiplication also extends the ideas from the discrete distribution monad. It maps any
distribution on the space of distributions P (X,ΣX) to the mean distribution respective to the given
distribution. More specifically, we define a multiplication µ : PP ⇒ P via

µX : P2X → PX :M 7→

A 7→ ∫
P (X,ΣX)

p(A)M(dp)


Equivalently, for fixed A ∈ ΣX and fixedM ∈ P2X , the right-hand side can be understood as an
expectation value of the evaluation map with respect toM, i.e.

µX(M)(A) = EM[evalA(p)].

Showing that µ is a natural transformation is divided into three steps:
(i) For every distributionM∈ P2X , we show that µX(M) is a probability measure.

(ii) The components µX are morphisms, i.e. they are measurable maps P2X → PX .

(iii) The naturality square commutes for µ.
The first two parts show that every component µX is indeed a well-defined morphism in the category
Measwhile the last part shows the naturality of µ.
(i) GivenM∈ P2X , µX(M) is a measure. Obviously, µX(M) is indeed a function with co-domain

[0, 1] since

µX(M)(X) =

∫
P (X,ΣX)

p(X)M(dp) =

∫
P (X,ΣX)

1M(dp) = 1



64 Appendix A. Construction of the Giry monad

where we used the fact thatM is a probability measure. Moreover, for a countable family of
disjoint sets {Ai}i∈N in ΣX we have that

µX(M)

( ∞⊔
i=1

Ai

)
=

∫
P (X,ΣX)

p

( ∞⊔
i=1

Ai

)
M(dp) (A.1)

=

∫
P (X,ΣX)

∞∑
i=1

p(Ai)M(dp)

=
∞∑
i=1

∫
P (X,ΣX)

p(Ai)M(dp) =
n∑
i=1

µX(M)(Ai).

The third equality applies the dominated convergence theorem, which holds true since p 7→
n∑
i=1

p(Ai) is measurable by definition of ΣPX and bounded from above by 1 for every n ∈ N.

(ii) µX : P2X → PX is a morphism, i.e. it is ΣP2X - ΣPX - measurable. By definition of ΣPX we
have to show that for every A ∈ ΣX and 0 ≤ r ≤ 1

µ−1
X

(
eval−1

A ([0, r]
)
∈ ΣP2X

Put differently, we have to verify that the map

P2X → [0, 1] :M 7→
∫

P (X,ΣX)

p(A)M(dp)

is measurable.

Instead of showing the statement for the function p 7→ p(A), we will show it for arbitrary
measurable function F : PX → [0, 1]. First, we show it for characteristic functions. For every
measurable set A ∈ ΣPX we obtain

M 7→ evalA(M) =M(A) =
∫

P (X,ΣX)

1A(p)M(dp).

This map is measurable by the definition of the σ-algebra of P2X . Hence, extending 1A to any
simple function F : P (X,ΣX)→ [0, 1] keeps the mapping

M 7→
∫

P (X,ΣX)

F (p)M(dp)

measurable. Since µX arises from setting F := p 7→ p(A) we obtain that µX is measurable by
using the fact that the limit of measurable functions is still measurable and by applying the
dominated convergence theorem.

(iii) µ is natural. Every morphism f : X → Y induces the morphism f⋆⋆ := P2f which reads

f⋆⋆ : P
2X → P2Y :M 7→

(
PY 7→ M

(
f−1
⋆ (PY )

))
.
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This implies for every morphism f : X → Y , every measurable set A ∈ ΣY and every probability
measureM∈ P2X that(

f⋆µX(M)
)
(A) =

∫
P (X,ΣX)

p(f−1(A))M(dp)

=

∫
P (X,ΣX)

evalA ◦ f⋆ dM

=

∫
P (Y,ΣY )

evalA d(f⋆⋆M)

=

∫
P (Y,ΣY )

q(A) (f⋆⋆M)(dq) =
(
µX(f⋆⋆M)

)
(A).

where we have applied Lemma A.2 in the third step. But this is precisely the statement that the
naturality square

P2X P2Y

P (X,ΣX) P (Y,ΣY )

f⋆⋆

µX µY

f⋆

commutes for every X,Y and f : X → Y , which shows the naturality of µ.
To show that (P, η, µ) is a monad, it remains to show that the three diagrams in Equation (1.12)
commute. For this reason, we need one technical lemma.

Lemma A.3. Let f : PX → Y be a measurable function and M ∈ P3X . Then, the following formula holds∫
PX

f(p)
(
µPX(M)

)
(dp) =

∫
P2X

∫
PX

f(p)M(dp) M(dM)

Proof. We first show the statement for simple functions f . For this reason, let f = 1A be the character-
istic function on a measurable subset A ⊆ PX . We then obtain∫

PX

1A(p)
(
µPX(M)

)
(dp) = µPX(M)(A)

=

∫
P2X

M(A) M(dM) =

∫
P2X

∫
PX

1A(p)M(dp)M(dM)

which shows the statement for characteristic functions. By linearity, this immediately proves the
statement even for any simple function. Now, let f be an arbitrary measurable function and si ↗ f a
monotone increasing sequence converging to f . Then, by the monotone convergence theorem, we have

Si(M) :=

∫
PX

si(p)M(dp)↗ S(M) =

∫
PX

f(p)M(dp).
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Moreover, we have again by monotone convergence

lim
i→∞

∫
PX

si(p) (µPX(M))(dp) =

∫
PX

f(p) (µPX(M))(dp).

Therefore, we have∫
PX

f(p)
(
µPX(M)

)
(dp) = lim

i→∞

∫
PX

si(p)
(
µPX(M)

)
(dp)

= lim
i→∞

∫
P2X

Si(M) M(dM)

=

∫
P2X

S(M) M(dM) =

∫
P2X

∫
PX

f(p)M(dp) M(dM)

where we applied the statement for simple functions in the second step and the monotone convergence
theorem in the third step.

We now state and prove the main statement of this appendix.

Theorem A.4. (P, η, µ) forms a monad.

Proof. We have to show that the diagrams in Equation (1.12) commute.
(i) We have to verify that µX ◦ ηPX = idPX .

Let p ∈ P (X,ΣX). For every A ∈ ΣX we obtain

(µX ◦ ηPX(p))(A) = µX(δp)(A) =

∫
P (X,ΣX)

q(A) δp(dq) = p(A)

which shows the statement.

(ii) We have to show that µX ◦ (PηX) = idPX .

Let again A ∈ ΣX and p ∈ PX . Then, we have

(
µX ◦ (PηX)(p)

)
(A) =

∫
P (X,ΣX)

evalA d
(
(ηX)⋆ p

)
=

∫
X

evA ◦ ηX dp

=

∫
X

δx(A) p(dx) = p(A)

where we have used Lemma A.2 in the second equation.
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(iii) We finally verify that µX ◦ PµX = µX ◦ µPX . We show this by manipulating both sides of the
equation. LetM ∈ P3X and A ∈ ΣX . Then, the left-hand side leads to

(µX ◦ PµX)(M)(A) =

∫
P (X,ΣX)

evalA d((µX)⋆ M)

=

∫
P2X

µX(M)(A)M(dM)

=

∫
P2X

∫
P (X,ΣX)

p(A)M(dp) M(dM)

where we have used Lemma A.2 in the second equation. Manipulating the right-hand side leads
to

(µX ◦ µPX)(M)(A) =

∫
P (X,ΣX)

evalA d(µPX(M))

=

∫
P2X

∫
P (X,ΣX)

evalA dMM(dM)

=

∫
P2X

∫
P (X,ΣX)

p(A)M(dp) M(dM)

where we have used Lemma A.3 in the second equation. Since both manipulations lead to the
same expression this shows the statement.
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